metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Amino-4,6-di­methyl­pyrimidine-κN1)(2-amino-4-methyl­pyrimidine-κN1)silver(I) nitrate

aDepartment of Chemistry, Mudanjiang Teachers College, Mudanjiang 157012, People's Republic of China
*Correspondence e-mail: youngflower7799@yahoo.com.cn

(Received 2 August 2009; accepted 1 September 2009; online 5 September 2009)

Colourless crystals of the title compound, [Ag(C5H7N3)(C6H9N3)]NO3, separated out of a solution of 2-amino-4-methyl­pyrimidine, 2-amino-4,6-dimethyl­pyrimidine and silver nitrate in water and methanol. The central AgI ion is coordinated by two different N atoms in the aromatic rings of the ligands, with an N—Ag—N angle of 173.9 (2)°. The crystal structure is composed of two complexed cations and stabilized by an inter­molecular N—H⋯O and N—H⋯N hydrogen-bond network and there is ππ stacking of the aromatic rings [inter­planar distance 3.651 (10) Å].

Related literature

For N—Ag—N coordination geometries, see: Greenwood & Earnshaw (1997[Greenwood, N. N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. Oxford: Pergamon Press.]). For ππ stacking, see: Munakata et al. (2000[Munakata, M., Wu, L. P. & Ning, G. L. (2000). Coord. Chem. Rev. 198, 171-203.]). For silver coordination networks, see: Seward et al. (2004[Seward, C., Jia, W. L., Wang, R. Y., Enright, G. D. & Wang, S. (2004). Angew. Chem. Int. Ed. Engl. 43, 2933-2936.]); Shimizu et al. (1999[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485-1486.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C5H7N3)(C6H9N3)]NO3

  • Mr = 402.18

  • Orthorhombic, P b c 21

  • a = 7.5689 (4) Å

  • b = 19.1582 (7) Å

  • c = 20.1826 (10) Å

  • V = 2926.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 120 K

  • 0.50 × 0.40 × 0.35 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.512, Tmax = 0.616

  • 11376 measured reflections

  • 3244 independent reflections

  • 2647 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.129

  • S = 1.10

  • 3244 reflections

  • 403 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), Friedel pairs merged

  • Flack parameter: 0.07 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O5 0.88 2.20 3.004 (10) 152
N2—H2C⋯N6i 0.88 2.17 3.053 (11) 178
N5—H5A⋯N3ii 0.88 2.20 3.078 (11) 178
N5—H5B⋯O1ii 0.88 2.33 3.042 (13) 138
N8—H8B⋯O4 0.88 2.36 3.026 (12) 133
N8—H8C⋯N12iii 0.88 2.20 3.073 (11) 175
N11—H11A⋯N9iv 0.88 2.15 3.029 (10) 176
N11—H11B⋯O2iv 0.88 2.16 2.965 (11) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, z]; (ii) [-x+1, y+{\script{1\over 2}}, z]; (iii) [-x, y-{\script{1\over 2}}, z]; (iv) [-x, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The nitrogen-containing bidentates, heterocyclic pyrimidine compounds are of great interests with capabilities to form stable hydrogen bonding network between aminos and nitrogen atoms of hetero rings. The crystal structure of the title compound (I) comprised of balanced NO3- anions and [Ag(2-amino-4-methylpyrimidine)(2-amino-4,6-dimethylpyrimidine)]+ cations. The central silver ion, coordinated to two nitrogen atoms from the pyrimidine rings of those two different ligands, giving linear N—Ag—N coordination geometries (Greenwood et al., 1997). The whole crystal structure was stabilized by multiple intermolecular N–H–N hydrogen bonding network and pi-pi stacking with the interplane distance of 3.65 Å (Munakata et al., 2000).

Related literature top

For N—Ag—N coordination geometries, see: Greenwood & Earnshaw (1997). For ππ stacking, see: Munakata et al. (2000). For related literature [on what subject?], see: Seward et al. (2004); Shimizu et al. (1999).

Experimental top

A solution of 108 mg (1 mmol) 2-amino-4-methylpyrimidine and 123 mg (1 mmol) of 2-amino-4,6-dimethylpyrimidine in water-CH3OH (1:1 V/V,10 ml) was added to an aqueous solution of AgNO3 170 mg (1 mmol) in 3 ml water with stirring at 333 K. A small amount of white precipitate was removed from the resulting solution. Prism shaped colorless crystals were obtained by slow evaporation of the solvent at room temperature over a period of 3 days.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C–H = 0.96–0.98 Å, and N–H = 0.88 Å, and Uiso(H) = 1.2 or 1.5Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of molecules, viewed down the b axis, with the weak interactions shown as dashed lines.
(2-Amino-4,6-dimethylpyrimidine-κN1)(2-amino-4-methylpyrimidine- κN1)silver(I) nitrate top
Crystal data top
[Ag(C5H7N3)(C6H9N3)]NO3F(000) = 1616
Mr = 402.18Dx = 1.826 Mg m3
Orthorhombic, Pbc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2bCell parameters from 3244 reflections
a = 7.5689 (4) Åθ = 2.9–27.0°
b = 19.1582 (7) ŵ = 1.40 mm1
c = 20.1826 (10) ÅT = 120 K
V = 2926.6 (2) Å3Prism, colourless
Z = 80.50 × 0.40 × 0.35 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3244 independent reflections
Radiation source: fine-focus sealed tube2647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 89
Tmin = 0.512, Tmax = 0.616k = 2423
11376 measured reflectionsl = 1725
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0822P)2 + 2.1516P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.010
3244 reflectionsΔρmax = 0.95 e Å3
403 parametersΔρmin = 0.63 e Å3
1 restraintAbsolute structure: Flack (1983), 0 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Crystal data top
[Ag(C5H7N3)(C6H9N3)]NO3V = 2926.6 (2) Å3
Mr = 402.18Z = 8
Orthorhombic, Pbc21Mo Kα radiation
a = 7.5689 (4) ŵ = 1.40 mm1
b = 19.1582 (7) ÅT = 120 K
c = 20.1826 (10) Å0.50 × 0.40 × 0.35 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3244 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2647 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.616Rint = 0.027
11376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.95 e Å3
S = 1.10Δρmin = 0.63 e Å3
3244 reflectionsAbsolute structure: Flack (1983), 0 Friedel pairs
403 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.71751 (9)0.60684 (3)0.47181 (3)0.0436 (2)
Ag20.21246 (9)0.64903 (3)0.49169 (4)0.0463 (2)
C10.7635 (13)0.5144 (5)0.3524 (6)0.045 (2)
H1A0.81440.55610.33560.054*
C20.7561 (14)0.4570 (5)0.3120 (6)0.046 (2)
H2A0.79930.45850.26780.055*
C30.6815 (11)0.3954 (5)0.3386 (5)0.040 (2)
C40.6715 (17)0.3304 (6)0.2971 (6)0.058 (3)
H4A0.65870.28960.32610.087*
H4B0.77980.32580.27090.087*
H4C0.56940.33330.26740.087*
C50.6273 (11)0.4538 (4)0.4376 (5)0.0337 (19)
C60.6599 (11)0.8125 (4)0.6122 (5)0.0352 (17)
C70.6426 (15)0.8776 (5)0.6539 (6)0.053 (2)
H7A0.53470.90260.64150.080*
H7B0.74530.90780.64660.080*
H7C0.63660.86460.70080.080*
C80.7394 (12)0.7544 (5)0.6393 (5)0.0381 (19)
H8A0.77760.75340.68410.046*
C90.7610 (12)0.6963 (5)0.5967 (5)0.0373 (19)
C100.8413 (15)0.6312 (6)0.6203 (7)0.058 (3)
H10A0.91420.61100.58500.087*
H10B0.74810.59810.63250.087*
H10C0.91530.64090.65900.087*
C110.6221 (11)0.7588 (4)0.5118 (4)0.0349 (18)
C120.2777 (12)0.5562 (5)0.3701 (5)0.0367 (19)
C130.3473 (17)0.6232 (6)0.3442 (7)0.061 (3)
H13A0.43420.64220.37540.091*
H13B0.25000.65650.33900.091*
H13C0.40390.61530.30120.091*
C140.2742 (12)0.4978 (6)0.3302 (5)0.041 (2)
H14A0.32110.49780.28660.050*
C150.1979 (10)0.4393 (5)0.3581 (5)0.0377 (19)
C160.1861 (17)0.3734 (6)0.3177 (6)0.060 (3)
H16A0.20050.33280.34690.090*
H16B0.27970.37330.28410.090*
H16C0.07060.37110.29590.090*
C170.1461 (11)0.4950 (4)0.4551 (4)0.0317 (17)
C180.1404 (11)0.8570 (4)0.6286 (4)0.0330 (16)
C190.1264 (14)0.9230 (5)0.6686 (6)0.055 (3)
H19A0.00810.94300.66310.082*
H19B0.21500.95660.65310.082*
H19C0.14680.91250.71540.082*
C200.2179 (12)0.7976 (5)0.6557 (5)0.042 (2)
H20A0.25820.79600.70020.050*
C210.2322 (12)0.7409 (5)0.6130 (6)0.039 (2)
H21A0.28620.69960.62940.046*
C220.0990 (11)0.8014 (5)0.5295 (4)0.0325 (18)
N10.7026 (8)0.5141 (4)0.4139 (4)0.0329 (15)
N20.5607 (11)0.4498 (4)0.4978 (4)0.0439 (18)
H2B0.56370.48650.52410.053*
H2C0.51330.41050.51170.053*
N30.6194 (9)0.3939 (3)0.3996 (4)0.0372 (16)
N40.7038 (9)0.6994 (3)0.5340 (4)0.0303 (15)
N50.5602 (11)0.7605 (4)0.4515 (4)0.0441 (19)
H5A0.50640.79820.43690.053*
H5B0.57220.72400.42550.053*
N60.6023 (9)0.8151 (3)0.5505 (4)0.0353 (15)
N70.2130 (9)0.5570 (4)0.4326 (4)0.0378 (18)
N80.0846 (11)0.4947 (4)0.5176 (4)0.0446 (19)
H8B0.08880.53310.54160.054*
H8C0.04020.45620.53450.054*
N90.1322 (10)0.4362 (3)0.4176 (4)0.0351 (15)
N100.1754 (9)0.7407 (3)0.5510 (4)0.0351 (16)
N110.0341 (10)0.8033 (3)0.4697 (4)0.0407 (16)
H11A0.01890.84130.45530.049*
H11B0.04340.76660.44370.049*
N120.0822 (9)0.8582 (3)0.5674 (4)0.0349 (15)
N130.1299 (12)0.1949 (4)0.3307 (4)0.0475 (19)
N140.3858 (11)0.5590 (4)0.6325 (4)0.0424 (17)
O10.2935 (10)0.1966 (5)0.3249 (6)0.076 (3)
O20.0732 (12)0.1825 (4)0.3870 (4)0.067 (2)
O30.0361 (15)0.2039 (8)0.2829 (6)0.114 (4)
O40.2254 (10)0.5607 (5)0.6432 (4)0.059 (2)
O50.4378 (11)0.5740 (4)0.5762 (4)0.0595 (19)
O60.4910 (11)0.5443 (5)0.6767 (6)0.076 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0552 (4)0.0293 (3)0.0463 (4)0.0003 (2)0.0008 (5)0.0078 (3)
Ag20.0636 (4)0.0301 (3)0.0451 (4)0.0007 (3)0.0003 (5)0.0077 (3)
C10.053 (5)0.033 (5)0.048 (6)0.001 (4)0.014 (5)0.006 (5)
C20.059 (6)0.039 (5)0.041 (6)0.005 (4)0.006 (4)0.003 (4)
C30.036 (4)0.038 (4)0.047 (5)0.006 (3)0.000 (4)0.004 (4)
C40.073 (7)0.046 (5)0.055 (7)0.001 (5)0.004 (5)0.018 (5)
C50.032 (4)0.028 (4)0.041 (5)0.007 (3)0.006 (4)0.014 (4)
C60.037 (4)0.038 (4)0.030 (4)0.002 (4)0.004 (3)0.009 (3)
C70.056 (5)0.051 (5)0.053 (6)0.001 (5)0.008 (5)0.022 (5)
C80.044 (4)0.032 (4)0.038 (5)0.003 (4)0.002 (4)0.002 (4)
C90.040 (4)0.036 (5)0.036 (5)0.005 (4)0.011 (4)0.001 (4)
C100.058 (6)0.064 (6)0.053 (7)0.001 (5)0.003 (5)0.007 (6)
C110.047 (5)0.028 (4)0.029 (4)0.011 (3)0.010 (4)0.006 (3)
C120.047 (5)0.038 (5)0.025 (4)0.000 (4)0.001 (4)0.003 (4)
C130.070 (7)0.054 (6)0.058 (8)0.011 (6)0.001 (6)0.018 (6)
C140.041 (4)0.055 (6)0.028 (5)0.012 (4)0.013 (4)0.005 (4)
C150.037 (4)0.038 (4)0.038 (5)0.007 (3)0.003 (4)0.008 (4)
C160.082 (8)0.047 (5)0.052 (7)0.003 (5)0.004 (6)0.014 (5)
C170.037 (4)0.033 (4)0.025 (4)0.002 (3)0.010 (3)0.001 (3)
C180.041 (4)0.026 (4)0.032 (4)0.004 (3)0.002 (3)0.008 (3)
C190.060 (6)0.043 (5)0.060 (7)0.002 (4)0.017 (5)0.015 (5)
C200.056 (5)0.041 (5)0.029 (4)0.011 (4)0.003 (4)0.004 (4)
C210.048 (5)0.035 (4)0.033 (5)0.001 (4)0.003 (4)0.002 (4)
C220.033 (4)0.033 (4)0.031 (5)0.011 (3)0.010 (3)0.002 (3)
N10.030 (3)0.026 (3)0.043 (4)0.007 (2)0.001 (3)0.002 (3)
N20.056 (4)0.036 (3)0.040 (4)0.004 (3)0.004 (4)0.013 (4)
N30.042 (4)0.027 (3)0.042 (4)0.002 (3)0.002 (3)0.012 (3)
N40.041 (4)0.018 (3)0.031 (4)0.002 (2)0.005 (3)0.005 (3)
N50.065 (5)0.037 (4)0.031 (4)0.008 (4)0.000 (4)0.006 (3)
N60.039 (3)0.027 (3)0.040 (4)0.004 (3)0.001 (3)0.006 (3)
N70.034 (3)0.040 (4)0.040 (5)0.004 (3)0.006 (3)0.015 (3)
N80.062 (5)0.035 (4)0.036 (4)0.008 (3)0.008 (4)0.007 (3)
N90.051 (4)0.027 (3)0.027 (4)0.008 (3)0.008 (3)0.003 (3)
N100.042 (4)0.021 (3)0.043 (4)0.001 (3)0.001 (3)0.001 (3)
N110.056 (4)0.030 (3)0.036 (4)0.008 (3)0.004 (4)0.001 (3)
N120.031 (3)0.031 (3)0.043 (4)0.002 (3)0.002 (3)0.001 (3)
N130.064 (5)0.046 (4)0.033 (4)0.001 (4)0.008 (4)0.004 (3)
N140.057 (5)0.042 (4)0.028 (4)0.002 (3)0.001 (3)0.006 (3)
O10.056 (5)0.078 (6)0.092 (8)0.006 (4)0.004 (5)0.023 (6)
O20.081 (5)0.061 (5)0.058 (5)0.012 (4)0.002 (4)0.007 (4)
O30.089 (6)0.190 (12)0.061 (7)0.021 (8)0.027 (6)0.035 (8)
O40.057 (4)0.082 (6)0.037 (4)0.009 (4)0.005 (3)0.014 (4)
O50.080 (5)0.056 (4)0.042 (4)0.003 (4)0.014 (4)0.002 (3)
O60.064 (5)0.088 (6)0.074 (7)0.010 (4)0.007 (5)0.018 (5)
Geometric parameters (Å, º) top
Ag1—N12.130 (8)C13—H13C0.9800
Ag1—N42.176 (6)C14—C151.380 (15)
Ag2—N102.145 (7)C14—H14A0.9500
Ag2—N72.129 (9)C15—N91.302 (12)
C1—N11.324 (14)C15—C161.506 (14)
C1—C21.371 (16)C16—H16A0.9800
C1—H1A0.9500C16—H16B0.9800
C2—C31.415 (14)C16—H16C0.9800
C2—H2A0.9500C17—N81.345 (11)
C3—N31.316 (13)C17—N71.368 (11)
C3—C41.503 (14)C17—N91.361 (11)
C4—H4A0.9800C18—N121.313 (11)
C4—H4B0.9800C18—C201.391 (13)
C4—H4C0.9800C18—C191.503 (12)
C5—N21.317 (13)C19—H19A0.9800
C5—N11.374 (12)C19—H19B0.9800
C5—N31.382 (11)C19—H19C0.9800
C6—N61.320 (12)C20—C211.391 (14)
C6—C81.378 (13)C20—H20A0.9500
C6—C71.511 (13)C21—N101.322 (14)
C7—H7A0.9800C21—H21A0.9500
C7—H7B0.9800C22—N111.304 (12)
C7—H7C0.9800C22—N121.336 (11)
C8—C91.416 (14)C22—N101.369 (11)
C8—H8A0.9500N2—H2B0.8800
C9—N41.338 (14)N2—H2C0.8800
C9—C101.467 (15)N5—H5A0.8800
C10—H10A0.9800N5—H5B0.8800
C10—H10B0.9800N8—H8B0.8800
C10—H10C0.9800N8—H8C0.8800
C11—N51.304 (11)N11—H11A0.8800
C11—N61.340 (11)N11—H11B0.8800
C11—N41.370 (11)N13—O31.210 (13)
C12—N71.353 (13)N13—O11.244 (12)
C12—C141.379 (14)N13—O21.238 (12)
C12—C131.482 (13)N14—O51.237 (11)
C13—H13A0.9800N14—O41.233 (11)
C13—H13B0.9800N14—O61.229 (12)
N1—Ag1—N4173.9 (2)C15—C16—H16B109.5
N10—Ag2—N7172.6 (3)H16A—C16—H16B109.5
N1—C1—C2122.7 (10)C15—C16—H16C109.5
N1—C1—H1A118.6H16A—C16—H16C109.5
C2—C1—H1A118.6H16B—C16—H16C109.5
C1—C2—C3117.3 (10)N8—C17—N7116.4 (8)
C1—C2—H2A121.4N8—C17—N9119.4 (8)
C3—C2—H2A121.4N7—C17—N9124.2 (8)
N3—C3—C2121.1 (9)N12—C18—C20121.7 (8)
N3—C3—C4119.0 (9)N12—C18—C19117.8 (8)
C2—C3—C4119.9 (10)C20—C18—C19120.5 (8)
C3—C4—H4A109.5C18—C19—H19A109.5
C3—C4—H4B109.5C18—C19—H19B109.5
H4A—C4—H4B109.5H19A—C19—H19B109.5
C3—C4—H4C109.5C18—C19—H19C109.5
H4A—C4—H4C109.5H19A—C19—H19C109.5
H4B—C4—H4C109.5H19B—C19—H19C109.5
N2—C5—N1121.9 (8)C21—C20—C18115.4 (9)
N2—C5—N3116.6 (8)C21—C20—H20A122.3
N1—C5—N3121.5 (8)C18—C20—H20A122.3
N6—C6—C8123.3 (9)C20—C21—N10124.2 (9)
N6—C6—C7117.8 (8)C20—C21—H21A117.9
C8—C6—C7118.9 (9)N10—C21—H21A117.9
C6—C7—H7A109.5N11—C22—N12118.1 (8)
C6—C7—H7B109.5N11—C22—N10118.5 (8)
H7A—C7—H7B109.5N12—C22—N10123.4 (8)
C6—C7—H7C109.5C1—N1—C5118.3 (8)
H7A—C7—H7C109.5C1—N1—Ag1119.5 (7)
H7B—C7—H7C109.5C5—N1—Ag1122.2 (6)
C6—C8—C9116.4 (9)C5—N2—H2B120.0
C6—C8—H8A121.8C5—N2—H2C120.0
C9—C8—H8A121.8H2B—N2—H2C120.0
N4—C9—C8120.0 (9)C3—N3—C5119.0 (8)
N4—C9—C10118.6 (9)C9—N4—C11119.6 (7)
C8—C9—C10121.3 (10)C9—N4—Ag1119.5 (6)
C9—C10—H10A109.5C11—N4—Ag1120.6 (6)
C9—C10—H10B109.5C11—N5—H5A120.0
H10A—C10—H10B109.5C11—N5—H5B120.0
C9—C10—H10C109.5H5A—N5—H5B120.0
H10A—C10—H10C109.5C6—N6—C11118.9 (8)
H10B—C10—H10C109.5C12—N7—C17115.8 (8)
N5—C11—N6118.9 (9)C12—N7—Ag2122.1 (6)
N5—C11—N4119.3 (8)C17—N7—Ag2122.1 (6)
N6—C11—N4121.8 (8)C17—N8—H8B120.0
N7—C12—C14123.0 (9)C17—N8—H8C120.0
N7—C12—C13116.6 (9)H8B—N8—H8C120.0
C14—C12—C13120.3 (10)C15—N9—C17116.5 (8)
C12—C13—H13A109.5C21—N10—C22115.8 (8)
C12—C13—H13B109.5C21—N10—Ag2119.2 (6)
H13A—C13—H13B109.5C22—N10—Ag2125.0 (6)
C12—C13—H13C109.5C22—N11—H11A120.0
H13A—C13—H13C109.5C22—N11—H11B120.0
H13B—C13—H13C109.5H11A—N11—H11B120.0
C15—C14—C12115.5 (9)C22—N12—C18119.5 (7)
C15—C14—H14A122.3O3—N13—O1120.4 (11)
C12—C14—H14A122.3O3—N13—O2123.8 (10)
N9—C15—C14124.9 (9)O1—N13—O2115.8 (10)
N9—C15—C16116.0 (9)O5—N14—O4117.9 (8)
C14—C15—C16119.1 (9)O5—N14—O6120.9 (9)
C15—C16—H16A109.5O4—N14—O6121.1 (9)
N1—C1—C2—C30.8 (16)N6—C11—N4—Ag1175.8 (6)
C1—C2—C3—N31.0 (15)N1—Ag1—N4—C995 (3)
C1—C2—C3—C4179.2 (10)N1—Ag1—N4—C1179 (3)
N6—C6—C8—C91.4 (13)C8—C6—N6—C110.4 (13)
C7—C6—C8—C9176.5 (8)C7—C6—N6—C11177.6 (8)
C6—C8—C9—N40.7 (13)N5—C11—N6—C6177.8 (8)
C6—C8—C9—C10179.0 (9)N4—C11—N6—C61.4 (12)
N7—C12—C14—C150.6 (13)C14—C12—N7—C171.5 (12)
C13—C12—C14—C15176.6 (9)C13—C12—N7—C17178.8 (9)
C12—C14—C15—N90.2 (13)C14—C12—N7—Ag2177.9 (7)
C12—C14—C15—C16179.2 (8)C13—C12—N7—Ag20.6 (11)
N12—C18—C20—C211.3 (13)N8—C17—N7—C12178.7 (8)
C19—C18—C20—C21176.7 (9)N9—C17—N7—C124.2 (12)
C18—C20—C21—N101.1 (14)N8—C17—N7—Ag22.0 (10)
C2—C1—N1—C50.7 (14)N9—C17—N7—Ag2175.2 (6)
C2—C1—N1—Ag1179.1 (8)N10—Ag2—N7—C12117 (2)
N2—C5—N1—C1178.7 (9)N10—Ag2—N7—C1763 (3)
N3—C5—N1—C12.0 (12)C14—C15—N9—C172.2 (12)
N2—C5—N1—Ag10.4 (11)C16—C15—N9—C17178.4 (8)
N3—C5—N1—Ag1179.7 (6)N8—C17—N9—C15178.4 (8)
N4—Ag1—N1—C1134 (3)N7—C17—N9—C154.5 (12)
N4—Ag1—N1—C544 (3)C20—C21—N10—C220.2 (13)
C2—C3—N3—C50.2 (13)C20—C21—N10—Ag2178.9 (7)
C4—C3—N3—C5179.5 (9)N11—C22—N10—C21177.3 (8)
N2—C5—N3—C3178.9 (8)N12—C22—N10—C210.5 (12)
N1—C5—N3—C31.8 (12)N11—C22—N10—Ag24.1 (10)
C8—C9—N4—C110.9 (12)N12—C22—N10—Ag2178.2 (5)
C10—C9—N4—C11177.5 (8)N7—Ag2—N10—C21115 (2)
C8—C9—N4—Ag1174.8 (6)N7—Ag2—N10—C2266 (3)
C10—C9—N4—Ag13.6 (11)N11—C22—N12—C18177.5 (8)
N5—C11—N4—C9177.2 (8)N10—C22—N12—C180.2 (12)
N6—C11—N4—C92.0 (12)C20—C18—N12—C220.7 (12)
N5—C11—N4—Ag13.4 (11)C19—C18—N12—C22177.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O50.882.203.004 (10)152
N2—H2C···N6i0.882.173.053 (11)178
N5—H5A···N3ii0.882.203.078 (11)178
N5—H5B···O1ii0.882.333.042 (13)138
N8—H8B···O40.882.363.026 (12)133
N8—H8C···N12iii0.882.203.073 (11)175
N11—H11A···N9iv0.882.153.029 (10)176
N11—H11B···O2iv0.882.162.965 (11)151
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z; (iii) x, y1/2, z; (iv) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ag(C5H7N3)(C6H9N3)]NO3
Mr402.18
Crystal system, space groupOrthorhombic, Pbc21
Temperature (K)120
a, b, c (Å)7.5689 (4), 19.1582 (7), 20.1826 (10)
V3)2926.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.50 × 0.40 × 0.35
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.512, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
11376, 3244, 2647
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.129, 1.10
No. of reflections3244
No. of parameters403
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.63
Absolute structureFlack (1983), 0 Friedel pairs
Absolute structure parameter0.07 (6)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O50.882.203.004 (10)152.4
N2—H2C···N6i0.882.173.053 (11)177.5
N5—H5A···N3ii0.882.203.078 (11)178.1
N5—H5B···O1ii0.882.333.042 (13)138.1
N8—H8B···O40.882.363.026 (12)133.0
N8—H8C···N12iii0.882.203.073 (11)174.5
N11—H11A···N9iv0.882.153.029 (10)176.3
N11—H11B···O2iv0.882.162.965 (11)151.4
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z; (iii) x, y1/2, z; (iv) x, y+1/2, z.
 

Acknowledgements

The author thanks the Natural Science Foundation of Heilongjiang Province for financial support.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGreenwood, N. N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. Oxford: Pergamon Press.  Google Scholar
First citationMunakata, M., Wu, L. P. & Ning, G. L. (2000). Coord. Chem. Rev. 198, 171–203.  Web of Science CrossRef CAS Google Scholar
First citationSeward, C., Jia, W. L., Wang, R. Y., Enright, G. D. & Wang, S. (2004). Angew. Chem. Int. Ed. Engl. 43, 2933–2936.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds