organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2369-o2370

2,9,16,19,22,25-Hexaoxa­tetra­cyclo­[24.4.0.24,7.010,15]dotriaconta-1(26),4,6,10(15),11,13,27,29,31-nona­ene

aDepartment of Chemistry, Konyang University, Nonsan 320-711, Republic of Korea, bCentral Instrument Facility, Gyeongsang National University, Jinju 660-701, Republic of Korea, and cResearch Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: wsim@konyang.ac.kr, kmpark@gnu.ac.kr

(Received 25 August 2009; accepted 2 September 2009; online 9 September 2009)

The title 22-crown-6 unit, C26H28O6, comprising of three benzo groups and triethyl­ene glycol, was prepared by the reaction of α,α′-dibromo-p-xylene with 1,8-bis­(2-hydroxy­phen­oxy)-3,6-dioxaoctane in the presence of Cs2CO3 with tetra­hydro­furan (THF) and recrystallized from dichloro­methane–hexane (1:20 v/v) at room temperature. In the mol­ecular structure, two O atoms of the central ethyl­ene glycol in the triethyl­ene glycol unit exhibit exo conformations due to intra­molecular C—H⋯O inter­actions. A number of C—H⋯O and C—H⋯π inter­molecular inter­actions contribute to the stabilization of the crystal packing.

Related literature

For the preparation of related compounds, see: Sim et al. (2001[Sim, W., Lee, J. Y., Kim, J. S., Kim, M.-J., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. E57, o416-o418.]); Weber & Vögtle (1976[Weber, E. & Vögtle, F. (1976). Chem. Ber. 109, 1803-1831.]). For a related structure, see: Sim et al. (2001[Sim, W., Lee, J. Y., Kim, J. S., Kim, M.-J., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. E57, o416-o418.]). For background to crown ether-based macrocyclic compounds and their inclusion behaviour, see: Gokel & Korzeniowski (1982[Gokel, G. W. & Korzeniowski, S. H. (1982). In Macrocyclic Polyether Syntheses. Berlin/Heidelberg/New York: Springer-Verlag.]); Izatt & Christensen (1981[Izatt, R. M. & Christensen, J. J. (1981). In Progress in Macrocyclic Chemistry, Vol. 2. New York: John Wiley and Sons.]); Lindoy (1989[Lindoy, L. F. (1989). In The Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press.]); Pedersen (1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495-2496.]); Vögtle & Weber (1985[Vögtle, F. & Weber, E. (1985). In Host Guest Complex Chemistry Macrocycles. Berlin/Heidelberg/New York: Springer-Verlag.]); Weber et al. (1989[Weber, E., Toner, J. L., Goldberg, S., Vögtle, F., Laidler, D. A., Stoddart, J. F., Bartsch, R. A. & Liotta, C. L. (1989). In Crown Ethers and Analogs. New York: John Wiley and Sons.]); Wolf et al. (1987[Wolf, R. E. Jr, Hartman, J. R., Storey, J. M. E., Foxman, B. M. & Cooper, S. R. (1987). J. Am. Chem. Soc. 109, 4328-4335.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28O6

  • Mr = 436.48

  • Monoclinic, P 21 /c

  • a = 12.348 (3) Å

  • b = 18.908 (4) Å

  • c = 9.824 (2) Å

  • β = 105.70 (3)°

  • V = 2208.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4142 measured reflections

  • 3896 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.02

  • 3896 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2 0.97 2.62 3.114 (2) 112
C10—H10A⋯O5 0.97 2.70 3.117 (2) 106
C2—H2⋯O1i 0.93 2.76 3.471 (2) 134
C7—H7B⋯O5ii 0.97 2.72 3.607 (2) 153
C11—H11B⋯O1ii 0.97 2.82 3.501 (3) 128
C11—H11B⋯O2ii 0.97 2.90 3.798 (3) 154
C12—H12B⋯O4iii 0.97 2.42 3.294 (3) 149
C25—H25⋯O3ii 0.93 2.71 3.433 (2) 135
C12—H12ACg1ii 0.97 2.76 3.47 138
C21—H21⋯Cg2i 0.93 2.97 3.47 115
C26—H26ACg3i 0.97 3.06 3.83 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z+2; (iii) -x, -y, -z+1. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C13–C18 and C20–C25 rings, respectively.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

An extraordinary variety of crown ether-based macrocyclic compounds have been synthesized and reported since crown ether was first discovered (Pedersen, 1967) because their topological interesting as well as their inclusion behaviour (Gokel & Korzeniowski, 1982; Izatt & Christensen, 1981; Lindoy 1989; Vögtle & Weber, 1985; Weber et al. 1989). We have also synthesized and reported the preparation and the solid-state structure of new crown ether (I) bearing three aromatic subunits (Sim et al., 2001). As a part of our continuing interest in the development of new crown compounds, the preparation and crystal structure of new crown ether-based macrocyclic compound (II) containing three benzo units of which ring size is larger than that of the previous reported compound (I) are presented here.

The title compound (II), 2,9,16,19,22,25-hexaoxatetracyclo[24.4.24,7.0.010,15]-dotriaconta-1(26),4,6, 10 (15),11,13,27,29,31-nonaene was prepared by the reaction of α,α'-dibromo-p-xylene with 1,8-bis(2-hydroxyphenoxy)-3,6-dioxaoctane in the presence of Cs2CO3 with tetrahydrofuran (THF) and recrystallized from dichloromethane/hexane (1:20) at room temperature to give colorless single crystals suitable for X-ray analysis.

In the molecular structure of (II), the torsion angels of C—C—O—C connecting A-to-B rings and A-to-C rings aromatic are 167.0 (2)° and 163.4 (2)°, respectively, which indicate that the A ring is situated trans to both the B and C rings, with dihedral angles of 57.04 (8)° between A and B and 44.41 (8)° between A and C. The dihedral angle between B and C rings is 14.2 (1)°. The all O—C—C—O and C—C—O—C torsion angles except two C—C—O—C in the triethylene glycol group exhibit gauche conformation. Two exceptional C—C—O—C (C10—C9—O3—C8 and C9—C10—O4—C11) torsion angles are trans conformation with the values of -162.5 (2)° and -156.1 (2)°, respectively.

Interestingly, two oxygen atoms of the central ethylene glycol in the triethylene glycol unit exhibit the exo-orientations which are very different from those found in the ethylene glycol backbone of (I) (Sim et al., 2001) or common crown ether-based compounds. In general, oxygen atoms of ethylene glycol group in crown ether-based compounds favor endo-orientation (Wolf et al., 1987). The exo-orientations of two oxygen atoms (O3 and O4) in (II) may be due to the intramolecular C—H···O interactions; 2.62 Å for C9—H9A···O2 and 2.70 Å for C10—H10A···O6 (Fig. 1 & Table 1).

The crystal packing is stabilized by not only intermolecular C—H···O hydrogen bonds with C—H···O separation in the range of 2.71–2.90 Å but intermolecular C—H···π interactions with C—H···Cg separations in the range of 2.76–3.06 Å (Fig. 2 & Table 1; Cg is the centroid of aromatic ring).

Related literature top

For the preparation of related compounds, see: Sim et al. (2001); Weber & Vögtle (1976). For related structures, see: Sim et al. (2001). For background to crown ether-based macrocyclic compounds and their inclusion behaviour, see: Gokel & Korzeniowski (1982); Izatt & Christensen (1981); Lindoy (1989); Pedersen (1967); Vögtle & Weber (1985); Weber et al. (1989); Wolf et al. (1987). Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C13–C18 and C20–C25 rings, respectively.

Experimental top

To a refluxing suspension of caesium carbonate (15.2 mmol) in THF under nitrogen was added dropwise a solution of α,α'-dibromo-p-xylene (3.75 mmol) and 1,8-bis(2-hydroxyphenoxy)-3,6-dioxaoctane (3.79 mmol) in THF over a period of 3 h. The mixture was then refluxed for an additional 24 h. After cooling to room temperature, 10% aqueous hydrochloric acid was added. The solvent was removed under reduced pressure and the residual mixture was extracted with dichloromethane. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and evaporated in vacuo. The crude product was chromatographed on a silica-gel column using a mixed solvent of ethyl acetate and n-hexane (1:1) as eluent, and recrystallized from dichloromethane/n-hexane (1:20, v/v) to give as a crystalline solid in 70% yield (m.p. 424 K). IR (KBr pellet): 2926, 1600, 1504, 1235, 1126, 996 and 735 cm-1. 1H NMR (CDCl3): δ 7.54 (d, 4H, Ar-H), 7.06–6.91 (m, 8H, Ar-H), 5.06 (s, 4H, ArCH2O), 4.12 (t, 4H, ArOCH2CH2OCH2), 3.88 (t, 4H, ArOCH2CH2OCH2) and 3.70 (t, 4H, ArOCH2CH2OCH2).

Refinement top

(type here to add refinement details)

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (II) with the atom-numbering scheme and intramolecular C—H···O interactions (dotted lines). Displacement ellipsoids are drawn at the 50% probability level. All H atoms except two H atoms related to intramolecular C—H···O hydrogen bonds have been omitted for clarity.
[Figure 2] Fig. 2. Intermolecular C—H···π (red dotted lines) and C—H···O (yellow dotted lines) interactions in the title compound. All H atoms except those related to intermolecular interactions have been omitted for clarity. Cg1, Cg2 and Cg3 denote the centroids of rings consisting of C1/C2/C3/C4/C5/C6, C13/C14/C15/C16/C17/C18 and C20/C21/C22/C23/C24/C25, respectively. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) -x, -y, -z + 2; (iii) -x, -y, -z + 1]
[Figure 3] Fig. 3. The structures of (I) and (II).
2,9,16,19,22,25-Hexaoxatetracyclo[24.4.0.24,7.010,15]dotriaconta- 1(26),4,6,10 (15),11,13,27,29,31-nonaene top
Crystal data top
C26H28O6F(000) = 928
Mr = 436.48Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3896 reflections
a = 12.348 (3) Åθ = 1.7–25.0°
b = 18.908 (4) ŵ = 0.09 mm1
c = 9.824 (2) ÅT = 293 K
β = 105.70 (3)°Plate, colorless
V = 2208.0 (8) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.1°, θmin = 1.7°
ω scansh = 1414
4142 measured reflectionsk = 022
3896 independent reflectionsl = 110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.0279P]
where P = (Fo2 + 2Fc2)/3
3896 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C26H28O6V = 2208.0 (8) Å3
Mr = 436.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.348 (3) ŵ = 0.09 mm1
b = 18.908 (4) ÅT = 293 K
c = 9.824 (2) Å0.25 × 0.20 × 0.10 mm
β = 105.70 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2654 reflections with I > 2σ(I)
4142 measured reflectionsRint = 0.057
3896 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
3896 reflectionsΔρmin = 0.19 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14749 (11)0.20218 (7)1.10961 (13)0.0498 (3)
O20.28741 (11)0.11040 (7)0.97137 (13)0.0520 (4)
O30.17603 (11)0.00949 (7)0.83350 (15)0.0568 (4)
O40.00678 (11)0.00265 (9)0.68633 (14)0.0624 (4)
O50.23169 (10)0.03178 (7)0.73303 (12)0.0474 (3)
O60.29941 (11)0.14286 (7)0.87761 (14)0.0552 (4)
C10.23684 (15)0.18893 (10)1.16215 (19)0.0446 (4)
C20.25554 (17)0.21956 (11)1.2812 (2)0.0538 (5)
H20.20570.25341.33130.065*
C30.34797 (19)0.20021 (12)1.3264 (2)0.0626 (6)
H30.35930.22041.40770.075*
C40.42279 (19)0.15159 (12)1.2525 (2)0.0639 (6)
H40.48540.13931.28280.077*
C50.40553 (17)0.12059 (11)1.1322 (2)0.0571 (5)
H50.45680.08761.08200.069*
C60.31315 (15)0.13823 (10)1.08660 (18)0.0449 (4)
C70.33649 (16)0.04425 (10)0.9193 (2)0.0509 (5)
H7A0.41780.04850.88890.061*
H7B0.31690.00880.99330.061*
C80.29280 (16)0.02303 (12)0.7974 (2)0.0557 (5)
H8A0.33240.01920.75460.067*
H8B0.30980.06030.72710.067*
C90.11025 (18)0.06755 (10)0.8132 (2)0.0567 (5)
H9A0.10330.10140.88930.068*
H9B0.14640.09100.72470.068*
C100.00358 (16)0.04204 (11)0.8106 (2)0.0532 (5)
H10A0.05330.08200.81290.064*
H10B0.03540.01270.89270.064*
C110.07916 (16)0.04707 (10)0.6910 (2)0.0551 (5)
H11A0.04650.08820.63600.066*
H11B0.10990.06230.78810.066*
C120.17270 (15)0.02012 (10)0.6366 (2)0.0480 (5)
H12A0.22290.05850.62920.058*
H12B0.14300.00060.54360.058*
C130.31566 (15)0.06729 (10)0.69757 (18)0.0426 (4)
C140.36356 (17)0.04880 (11)0.5914 (2)0.0541 (5)
H140.33910.00840.53800.065*
C150.44755 (18)0.08973 (12)0.5636 (2)0.0617 (6)
H150.47940.07680.49160.074*
C160.48412 (16)0.14911 (12)0.6415 (2)0.0588 (6)
H160.54050.17670.62230.071*
C170.43756 (16)0.16805 (11)0.7484 (2)0.0530 (5)
H170.46330.20830.80180.064*
C180.35325 (14)0.12816 (10)0.77722 (19)0.0427 (4)
C190.30700 (16)0.21254 (10)0.9329 (2)0.0521 (5)
H19A0.29750.24680.85710.063*
H19B0.38010.21990.99940.063*
C200.21604 (15)0.22107 (9)1.00562 (19)0.0457 (4)
C210.16951 (16)0.28661 (10)1.0145 (2)0.0501 (5)
H210.19680.32600.97770.060*
C220.08275 (17)0.29458 (10)1.0775 (2)0.0503 (5)
H220.05320.33941.08330.060*
C230.03947 (16)0.23753 (10)1.1316 (2)0.0492 (5)
C240.08909 (18)0.17237 (10)1.1269 (2)0.0565 (5)
H240.06340.13331.16640.068*
C250.17552 (17)0.16431 (10)1.0652 (2)0.0548 (5)
H250.20730.11981.06350.066*
C260.05795 (17)0.24454 (11)1.1932 (2)0.0574 (5)
H26A0.03730.22841.29050.069*
H26B0.08130.29361.19140.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0493 (7)0.0561 (8)0.0464 (7)0.0046 (6)0.0169 (6)0.0083 (6)
O20.0533 (8)0.0572 (8)0.0480 (7)0.0055 (6)0.0178 (6)0.0082 (6)
O30.0508 (8)0.0470 (8)0.0751 (9)0.0046 (6)0.0214 (7)0.0069 (7)
O40.0447 (7)0.0944 (11)0.0434 (7)0.0134 (8)0.0038 (6)0.0129 (7)
O50.0492 (7)0.0495 (7)0.0453 (7)0.0086 (6)0.0156 (6)0.0089 (6)
O60.0656 (9)0.0480 (8)0.0600 (8)0.0131 (7)0.0305 (7)0.0144 (6)
C10.0464 (10)0.0450 (11)0.0425 (10)0.0107 (8)0.0121 (9)0.0034 (8)
C20.0593 (12)0.0511 (12)0.0526 (12)0.0106 (10)0.0179 (10)0.0054 (9)
C30.0652 (13)0.0716 (14)0.0568 (13)0.0154 (12)0.0268 (11)0.0045 (11)
C40.0554 (12)0.0785 (16)0.0661 (14)0.0117 (12)0.0305 (11)0.0083 (12)
C50.0474 (11)0.0663 (14)0.0587 (13)0.0043 (10)0.0163 (10)0.0020 (11)
C60.0449 (10)0.0507 (11)0.0406 (10)0.0109 (9)0.0139 (8)0.0031 (9)
C70.0446 (10)0.0529 (12)0.0528 (11)0.0026 (9)0.0092 (9)0.0038 (9)
C80.0479 (11)0.0608 (12)0.0550 (12)0.0029 (10)0.0080 (9)0.0118 (10)
C90.0617 (13)0.0452 (11)0.0686 (13)0.0005 (10)0.0269 (11)0.0013 (10)
C100.0517 (11)0.0608 (13)0.0468 (11)0.0001 (10)0.0127 (9)0.0047 (10)
C110.0494 (11)0.0522 (12)0.0626 (12)0.0069 (10)0.0129 (10)0.0170 (10)
C120.0466 (11)0.0488 (11)0.0455 (10)0.0017 (9)0.0070 (9)0.0105 (9)
C130.0396 (10)0.0469 (11)0.0412 (10)0.0054 (8)0.0107 (8)0.0063 (8)
C140.0577 (12)0.0583 (12)0.0500 (11)0.0051 (10)0.0209 (10)0.0012 (10)
C150.0609 (13)0.0730 (15)0.0609 (13)0.0107 (12)0.0328 (11)0.0073 (12)
C160.0469 (11)0.0640 (14)0.0714 (14)0.0053 (10)0.0261 (11)0.0164 (12)
C170.0442 (10)0.0521 (11)0.0617 (13)0.0023 (9)0.0130 (10)0.0027 (10)
C180.0406 (10)0.0445 (10)0.0440 (10)0.0028 (8)0.0133 (8)0.0031 (8)
C190.0529 (12)0.0452 (11)0.0591 (12)0.0097 (9)0.0168 (10)0.0106 (9)
C200.0462 (10)0.0429 (10)0.0452 (10)0.0079 (8)0.0073 (9)0.0096 (8)
C210.0584 (12)0.0397 (10)0.0499 (11)0.0091 (9)0.0106 (9)0.0050 (9)
C220.0595 (12)0.0394 (10)0.0496 (11)0.0002 (9)0.0106 (10)0.0082 (9)
C230.0516 (11)0.0464 (11)0.0488 (11)0.0063 (9)0.0121 (9)0.0148 (9)
C240.0676 (13)0.0405 (11)0.0681 (14)0.0068 (10)0.0296 (11)0.0043 (10)
C250.0629 (13)0.0379 (11)0.0679 (13)0.0010 (9)0.0250 (11)0.0031 (9)
C260.0605 (13)0.0522 (12)0.0618 (13)0.0069 (10)0.0205 (11)0.0191 (10)
Geometric parameters (Å, º) top
O1—C11.362 (2)C11—C121.488 (3)
O1—C261.431 (2)C11—H11A0.9700
O2—C61.362 (2)C11—H11B0.9700
O2—C71.423 (2)C12—H12A0.9700
O3—C91.412 (2)C12—H12B0.9700
O3—C81.412 (2)C13—C141.376 (3)
O4—C101.406 (2)C13—C181.398 (3)
O4—C111.409 (2)C14—C151.379 (3)
O5—C131.357 (2)C14—H140.9300
O5—C121.420 (2)C15—C161.365 (3)
O6—C181.359 (2)C15—H150.9300
O6—C191.418 (2)C16—C171.374 (3)
C1—C21.380 (3)C16—H160.9300
C1—C61.407 (3)C17—C181.376 (3)
C2—C31.381 (3)C17—H170.9300
C2—H20.9300C19—C201.494 (3)
C3—C41.365 (3)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C4—C51.386 (3)C20—C211.379 (3)
C4—H40.9300C20—C251.380 (3)
C5—C61.375 (3)C21—C221.383 (3)
C5—H50.9300C21—H210.9300
C7—C81.495 (3)C22—C231.373 (3)
C7—H7A0.9700C22—H220.9300
C7—H7B0.9700C23—C241.382 (3)
C8—H8A0.9700C23—C261.491 (3)
C8—H8B0.9700C24—C251.371 (3)
C9—C101.493 (3)C24—H240.9300
C9—H9A0.9700C25—H250.9300
C9—H9B0.9700C26—H26A0.9700
C10—H10A0.9700C26—H26B0.9700
C10—H10B0.9700
C1—O1—C26117.71 (14)O5—C12—C11107.74 (14)
C6—O2—C7117.76 (14)O5—C12—H12A110.2
C9—O3—C8114.27 (16)C11—C12—H12A110.2
C10—O4—C11115.74 (15)O5—C12—H12B110.2
C13—O5—C12117.39 (13)C11—C12—H12B110.2
C18—O6—C19118.25 (14)H12A—C12—H12B108.5
O1—C1—C2125.65 (18)O5—C13—C14125.71 (17)
O1—C1—C6114.90 (15)O5—C13—C18115.11 (15)
C2—C1—C6119.44 (18)C14—C13—C18119.17 (17)
C1—C2—C3120.2 (2)C13—C14—C15120.5 (2)
C1—C2—H2119.9C13—C14—H14119.7
C3—C2—H2119.9C15—C14—H14119.7
C4—C3—C2120.5 (2)C16—C15—C14120.18 (19)
C4—C3—H3119.8C16—C15—H15119.9
C2—C3—H3119.8C14—C15—H15119.9
C3—C4—C5120.0 (2)C15—C16—C17119.98 (19)
C3—C4—H4120.0C15—C16—H16120.0
C5—C4—H4120.0C17—C16—H16120.0
C6—C5—C4120.5 (2)C16—C17—C18120.7 (2)
C6—C5—H5119.7C16—C17—H17119.6
C4—C5—H5119.7C18—C17—H17119.6
O2—C6—C5125.33 (18)O6—C18—C17125.69 (17)
O2—C6—C1115.35 (16)O6—C18—C13114.89 (15)
C5—C6—C1119.32 (17)C17—C18—C13119.41 (17)
O2—C7—C8108.22 (16)O6—C19—C20107.65 (15)
O2—C7—H7A110.1O6—C19—H19A110.2
C8—C7—H7A110.1C20—C19—H19A110.2
O2—C7—H7B110.1O6—C19—H19B110.2
C8—C7—H7B110.1C20—C19—H19B110.2
H7A—C7—H7B108.4H19A—C19—H19B108.5
O3—C8—C7114.40 (16)C21—C20—C25117.85 (18)
O3—C8—H8A108.7C21—C20—C19120.50 (17)
C7—C8—H8A108.7C25—C20—C19121.65 (17)
O3—C8—H8B108.7C20—C21—C22120.86 (18)
C7—C8—H8B108.7C20—C21—H21119.6
H8A—C8—H8B107.6C22—C21—H21119.6
O3—C9—C10109.36 (16)C23—C22—C21121.17 (18)
O3—C9—H9A109.8C23—C22—H22119.4
C10—C9—H9A109.8C21—C22—H22119.4
O3—C9—H9B109.8C22—C23—C24117.69 (18)
C10—C9—H9B109.8C22—C23—C26121.89 (18)
H9A—C9—H9B108.2C24—C23—C26120.41 (18)
O4—C10—C9108.74 (17)C25—C24—C23121.26 (19)
O4—C10—H10A109.9C25—C24—H24119.4
C9—C10—H10A109.9C23—C24—H24119.4
O4—C10—H10B109.9C24—C25—C20121.07 (19)
C9—C10—H10B109.9C24—C25—H25119.5
H10A—C10—H10B108.3C20—C25—H25119.5
O4—C11—C12114.25 (17)O1—C26—C23107.49 (15)
O4—C11—H11A108.7O1—C26—H26A110.2
C12—C11—H11A108.7C23—C26—H26A110.2
O4—C11—H11B108.7O1—C26—H26B110.2
C12—C11—H11B108.7C23—C26—H26B110.2
H11A—C11—H11B107.6H26A—C26—H26B108.5
C26—O1—C1—C28.2 (3)C13—C14—C15—C160.1 (3)
C26—O1—C1—C6170.39 (16)C14—C15—C16—C170.3 (3)
O1—C1—C2—C3178.12 (17)C15—C16—C17—C180.7 (3)
C6—C1—C2—C30.5 (3)C19—O6—C18—C1717.7 (3)
C1—C2—C3—C41.2 (3)C19—O6—C18—C13161.32 (17)
C2—C3—C4—C50.8 (3)C16—C17—C18—O6178.25 (18)
C3—C4—C5—C60.2 (3)C16—C17—C18—C130.7 (3)
C7—O2—C6—C520.6 (3)O5—C13—C18—O60.4 (2)
C7—O2—C6—C1159.34 (16)C14—C13—C18—O6178.72 (16)
C4—C5—C6—O2179.09 (18)O5—C13—C18—C17179.49 (16)
C4—C5—C6—C10.9 (3)C14—C13—C18—C170.3 (3)
O1—C1—C6—O20.7 (2)C18—O6—C19—C20163.38 (15)
C2—C1—C6—O2179.42 (16)O6—C19—C20—C21151.26 (17)
O1—C1—C6—C5179.28 (16)O6—C19—C20—C2528.5 (2)
C2—C1—C6—C50.5 (3)C25—C20—C21—C221.9 (3)
C6—O2—C7—C8177.71 (15)C19—C20—C21—C22177.84 (17)
C9—O3—C8—C795.6 (2)C20—C21—C22—C230.7 (3)
O2—C7—C8—O364.9 (2)C21—C22—C23—C243.0 (3)
C8—O3—C9—C10162.52 (16)C21—C22—C23—C26176.78 (18)
C11—O4—C10—C9156.07 (16)C22—C23—C24—C252.6 (3)
O3—C9—C10—O469.2 (2)C26—C23—C24—C25177.11 (19)
C10—O4—C11—C1293.9 (2)C23—C24—C25—C200.0 (3)
C13—O5—C12—C11175.06 (15)C21—C20—C25—C242.2 (3)
O4—C11—C12—O568.5 (2)C19—C20—C25—C24177.50 (19)
C12—O5—C13—C1413.4 (3)C1—O1—C26—C23166.99 (15)
C12—O5—C13—C18165.73 (15)C22—C23—C26—O1118.0 (2)
O5—C13—C14—C15179.01 (17)C24—C23—C26—O161.7 (2)
C18—C13—C14—C150.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O20.972.623.114 (2)112
C10—H10A···O50.972.703.117 (2)106
C2—H2···O1i0.932.763.471 (2)134
C7—H7B···O5ii0.972.723.607 (2)153
C11—H11B···O1ii0.972.823.501 (3)128
C11—H11B···O2ii0.972.903.798 (3)154
C12—H12B···O4iii0.972.423.294 (3)149
C25—H25···O3ii0.932.713.433 (2)135
C12—H12A···Cg1ii0.972.763.47138
C21—H21···Cg2i0.932.973.47115
C26—H26A···Cg3i0.973.063.83138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H28O6
Mr436.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.348 (3), 18.908 (4), 9.824 (2)
β (°) 105.70 (3)
V3)2208.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4142, 3896, 2654
Rint0.057
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.02
No. of reflections3896
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O20.972.623.114 (2)112.2
C10—H10A···O50.972.703.117 (2)106.3
C2—H2···O1i0.932.763.471 (2)133.6
C7—H7B···O5ii0.972.723.607 (2)152.5
C11—H11B···O1ii0.972.823.501 (3)127.7
C11—H11B···O2ii0.972.903.798 (3)154.4
C12—H12B···O4iii0.972.423.294 (3)149.0
C25—H25···O3ii0.932.713.433 (2)134.8
C12—H12A···Cg1ii0.972.763.47137.9
C21—H21···Cg2i0.932.973.47114.8
C26—H26A···Cg3i0.973.063.83137.5
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+2; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by the Konyang University Research Fund in 2009 and also by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–359-C00019).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Korzeniowski, S. H. (1982). In Macrocyclic Polyether Syntheses. Berlin/Heidelberg/New York: Springer-Verlag.  Google Scholar
First citationIzatt, R. M. & Christensen, J. J. (1981). In Progress in Macrocyclic Chemistry, Vol. 2. New York: John Wiley and Sons.  Google Scholar
First citationLindoy, L. F. (1989). In The Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press.  Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495–2496.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSim, W., Lee, J. Y., Kim, J. S., Kim, M.-J., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. E57, o416–o418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVögtle, F. & Weber, E. (1985). In Host Guest Complex Chemistry Macrocycles. Berlin/Heidelberg/New York: Springer-Verlag.  Google Scholar
First citationWeber, E., Toner, J. L., Goldberg, S., Vögtle, F., Laidler, D. A., Stoddart, J. F., Bartsch, R. A. & Liotta, C. L. (1989). In Crown Ethers and Analogs. New York: John Wiley and Sons.  Google Scholar
First citationWeber, E. & Vögtle, F. (1976). Chem. Ber. 109, 1803–1831.  CrossRef CAS Web of Science Google Scholar
First citationWolf, R. E. Jr, Hartman, J. R., Storey, J. M. E., Foxman, B. M. & Cooper, S. R. (1987). J. Am. Chem. Soc. 109, 4328–4335.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2369-o2370
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds