organic compounds
4,4′-Bipyridinium 1,4-phenylenediacetate
aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenziluczl@yahoo.co.uk
The title compound, C10H10N22+·C10H8O42−, has inversion centres located at the geometric centres of the 1,4-phenylenediacetate anion and 4,4′-bipyridinium cation. The anions and cations are connected by N—H⋯O hydrogen bonds, forming one-dimensional supramolecular chains, which interact with each other via π–π interactions [centroid–centroid distance = 3.938 (2) Å], building a two-dimensional supramolecular sheet.
Related literature
For related complexes of 1,4-phenylenediacetic acid, see: Braverman & LaDuca (2007); Soares-Santos et al. (2008); Liu et al. (2009); Chen et al. (2006a,b).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809036836/jh2103sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809036836/jh2103Isup2.hkl
A mixture of 1,4-phenylenediacetic acid (0.0584 g, 0.3 mmol), 4,4'-bipyridine (0.0312 g, 0.2 mmol), Mn(CH3COO)2.4H2O (0.0735 g, 0.3 mmol) and ethanol (2 ml) was sealed in a 23 ml Teflon-lined autoclave, heated at 140 °C for 4 d and cooled over a period of 48 h. Colorless crystals of the title compound were collected in a yield of 60% (0.0802 g). Found: C, 68.26; H, 5.40; N, 7.28. C20H18N2O4 requires C, 68.56; H, 5.18; N, 7.52%.
H atoms on the carbon and nitrogen atoms were placed at calculated positions (C–H = 0.93 Å and N–H = 0.86 Å) and were included in the
in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N).Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H10N22+·C10H8O42− | Z = 1 |
Mr = 350.36 | F(000) = 184 |
Triclinic, P1 | Dx = 1.354 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.579 (3) Å | Cell parameters from 736 reflections |
b = 6.950 (5) Å | θ = 3.0–23.8° |
c = 13.859 (10) Å | µ = 0.10 mm−1 |
α = 99.618 (9)° | T = 296 K |
β = 93.672 (9)° | Block, colourless |
γ = 97.373 (8)° | 0.25 × 0.20 × 0.18 mm |
V = 429.6 (5) Å3 |
Bruker SMART CCD area detector diffractometer | 1499 independent reflections |
Radiation source: fine-focus sealed tube | 1052 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ϕ and ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −5→5 |
Tmin = 0.977, Tmax = 0.983 | k = −8→7 |
2241 measured reflections | l = −10→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.193 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0979P)2 + 0.1429P] where P = (Fo2 + 2Fc2)/3 |
1499 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C10H10N22+·C10H8O42− | γ = 97.373 (8)° |
Mr = 350.36 | V = 429.6 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.579 (3) Å | Mo Kα radiation |
b = 6.950 (5) Å | µ = 0.10 mm−1 |
c = 13.859 (10) Å | T = 296 K |
α = 99.618 (9)° | 0.25 × 0.20 × 0.18 mm |
β = 93.672 (9)° |
Bruker SMART CCD area detector diffractometer | 1499 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 1052 reflections with I > 2σ(I) |
Tmin = 0.977, Tmax = 0.983 | Rint = 0.014 |
2241 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.193 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.41 e Å−3 |
1499 reflections | Δρmin = −0.25 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.6746 (5) | 0.5442 (3) | 0.19005 (15) | 0.0691 (7) | |
O1 | 0.7402 (6) | 0.3340 (3) | 0.28869 (16) | 0.0812 (8) | |
N1 | 0.3813 (5) | 0.7303 (4) | 0.32281 (18) | 0.0628 (7) | |
H1 | 0.4734 | 0.6645 | 0.2794 | 0.075* | |
C8 | 0.0807 (6) | 0.9428 (4) | 0.46281 (19) | 0.0511 (7) | |
C4 | 0.6539 (6) | −0.0571 (4) | 0.0761 (2) | 0.0568 (8) | |
H4 | 0.7572 | −0.0977 | 0.1273 | 0.068* | |
C5 | 0.4446 (7) | −0.1901 (4) | 0.0152 (2) | 0.0583 (8) | |
H5 | 0.4078 | −0.3191 | 0.0262 | 0.070* | |
C3 | 0.7125 (6) | 0.1349 (4) | 0.06220 (19) | 0.0522 (7) | |
C7 | 0.1869 (7) | 0.7720 (4) | 0.4784 (2) | 0.0644 (8) | |
H7 | 0.1595 | 0.7255 | 0.5367 | 0.077* | |
C9 | 0.1311 (8) | 1.0030 (5) | 0.3742 (2) | 0.0709 (9) | |
H9 | 0.0632 | 1.1163 | 0.3597 | 0.085* | |
C6 | 0.3343 (7) | 0.6709 (4) | 0.4066 (2) | 0.0689 (9) | |
H6 | 0.4032 | 0.5558 | 0.4179 | 0.083* | |
C2 | 0.9333 (7) | 0.2827 (5) | 0.1320 (2) | 0.0642 (8) | |
H2A | 1.0804 | 0.2150 | 0.1606 | 0.077* | |
H2B | 1.0338 | 0.3765 | 0.0963 | 0.077* | |
C1 | 0.7762 (6) | 0.3900 (4) | 0.2123 (2) | 0.0524 (7) | |
C10 | 0.2832 (7) | 0.8930 (5) | 0.3077 (2) | 0.0739 (10) | |
H10 | 0.3182 | 0.9365 | 0.2490 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0924 (16) | 0.0590 (13) | 0.0641 (14) | 0.0268 (11) | 0.0119 (11) | 0.0198 (10) |
O1 | 0.119 (2) | 0.0764 (15) | 0.0619 (14) | 0.0402 (14) | 0.0238 (13) | 0.0264 (12) |
N1 | 0.0687 (16) | 0.0644 (16) | 0.0565 (15) | 0.0193 (12) | 0.0133 (12) | 0.0033 (12) |
C8 | 0.0531 (16) | 0.0494 (15) | 0.0509 (16) | 0.0097 (12) | 0.0035 (12) | 0.0074 (12) |
C4 | 0.0694 (18) | 0.0581 (17) | 0.0498 (16) | 0.0235 (14) | 0.0140 (14) | 0.0151 (13) |
C5 | 0.0774 (19) | 0.0476 (16) | 0.0568 (17) | 0.0191 (14) | 0.0214 (15) | 0.0157 (13) |
C3 | 0.0563 (16) | 0.0547 (16) | 0.0487 (15) | 0.0168 (13) | 0.0214 (12) | 0.0049 (12) |
C7 | 0.085 (2) | 0.0583 (18) | 0.0566 (18) | 0.0252 (15) | 0.0140 (15) | 0.0156 (14) |
C9 | 0.094 (2) | 0.066 (2) | 0.066 (2) | 0.0364 (17) | 0.0240 (17) | 0.0240 (15) |
C6 | 0.092 (2) | 0.0569 (18) | 0.065 (2) | 0.0303 (17) | 0.0141 (17) | 0.0125 (15) |
C2 | 0.0603 (17) | 0.0675 (19) | 0.0650 (19) | 0.0138 (15) | 0.0152 (14) | 0.0048 (15) |
C1 | 0.0589 (16) | 0.0480 (15) | 0.0503 (16) | 0.0081 (13) | 0.0052 (13) | 0.0081 (12) |
C10 | 0.095 (2) | 0.076 (2) | 0.063 (2) | 0.0354 (19) | 0.0246 (18) | 0.0229 (16) |
O2—C1 | 1.296 (3) | C5—H5 | 0.9300 |
O1—C1 | 1.202 (3) | C3—C5ii | 1.388 (4) |
N1—C10 | 1.312 (4) | C3—C2 | 1.513 (4) |
N1—C6 | 1.317 (4) | C7—C6 | 1.383 (4) |
N1—H1 | 0.8600 | C7—H7 | 0.9300 |
C8—C7 | 1.383 (4) | C9—C10 | 1.379 (4) |
C8—C9 | 1.386 (4) | C9—H9 | 0.9300 |
C8—C8i | 1.488 (5) | C6—H6 | 0.9300 |
C4—C3 | 1.375 (4) | C2—C1 | 1.508 (4) |
C4—C5 | 1.375 (4) | C2—H2A | 0.9700 |
C4—H4 | 0.9300 | C2—H2B | 0.9700 |
C5—C3ii | 1.388 (4) | C10—H10 | 0.9300 |
C10—N1—C6 | 117.9 (3) | C10—C9—C8 | 119.3 (3) |
C10—N1—H1 | 121.0 | C10—C9—H9 | 120.4 |
C6—N1—H1 | 121.0 | C8—C9—H9 | 120.4 |
C7—C8—C9 | 116.8 (3) | N1—C6—C7 | 122.9 (3) |
C7—C8—C8i | 122.0 (3) | N1—C6—H6 | 118.5 |
C9—C8—C8i | 121.3 (3) | C7—C6—H6 | 118.5 |
C3—C4—C5 | 120.9 (3) | C1—C2—C3 | 109.8 (2) |
C3—C4—H4 | 119.5 | C1—C2—H2A | 109.7 |
C5—C4—H4 | 119.5 | C3—C2—H2A | 109.7 |
C4—C5—C3ii | 121.1 (3) | C1—C2—H2B | 109.7 |
C4—C5—H5 | 119.5 | C3—C2—H2B | 109.7 |
C3ii—C5—H5 | 119.5 | H2A—C2—H2B | 108.2 |
C4—C3—C5ii | 118.0 (3) | O1—C1—O2 | 123.0 (3) |
C4—C3—C2 | 120.7 (3) | O1—C1—C2 | 123.0 (3) |
C5ii—C3—C2 | 121.3 (3) | O2—C1—C2 | 113.9 (3) |
C8—C7—C6 | 119.6 (3) | N1—C10—C9 | 123.5 (3) |
C8—C7—H7 | 120.2 | N1—C10—H10 | 118.3 |
C6—C7—H7 | 120.2 | C9—C10—H10 | 118.3 |
C3—C4—C5—C3ii | 0.3 (4) | C8—C7—C6—N1 | 0.4 (5) |
C5—C4—C3—C5ii | −0.3 (4) | C4—C3—C2—C1 | −92.6 (3) |
C5—C4—C3—C2 | 177.3 (2) | C5ii—C3—C2—C1 | 85.0 (3) |
C9—C8—C7—C6 | −0.2 (5) | C3—C2—C1—O1 | 90.7 (4) |
C8i—C8—C7—C6 | 179.7 (3) | C3—C2—C1—O2 | −87.0 (3) |
C7—C8—C9—C10 | −0.5 (5) | C6—N1—C10—C9 | −0.8 (5) |
C8i—C8—C9—C10 | 179.6 (3) | C8—C9—C10—N1 | 1.0 (6) |
C10—N1—C6—C7 | 0.1 (5) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C10H10N22+·C10H8O42− |
Mr | 350.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 4.579 (3), 6.950 (5), 13.859 (10) |
α, β, γ (°) | 99.618 (9), 93.672 (9), 97.373 (8) |
V (Å3) | 429.6 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.25 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.977, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2241, 1499, 1052 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.193, 1.07 |
No. of reflections | 1499 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.25 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors are grateful for financial support from the Guangxi Natural Science Foundation (grant No. 0991008) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, China (grant No. [2006]331).
References
Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2343–2351. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006a). Acta Cryst. C62, m48–m50. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chen, Z.-L., Zhang, Y.-Z., Liang, F.-P. & Wu, Q. (2006b). Acta Cryst. E62, m2409–m2411. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, T., Lü, J., Shi, L., Guo, Z. & Cao, R. (2009). CrystEngComm, 11, 583–588. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soares-Santos, P. C. R., Cunha-Silva, L., Almeida Paz, F. A., Sá Ferreira, R. A., Rocha, J., Trindade, T., Carlos, L. D. & Nogueira, H. I. S. (2008). Cryst. Growth Des. 8, 2505–2516. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The flexible ligand of 1,4-phenylenediacetate is drawing much interest in constructing metal–organic framework or supramolecular molecules due to its flexibility and its multifunctional groups of carboxylato group and phenyl ring (Braverman & LaDuca 2007; Soares-Santos et al., 2008; Liu et al., 2009; Chen et al., 2006a,b). We thus report here a supramolecular structrure formed by 4,4'-bipyridine and 1,4-phenylenediacetic acid. The title compound 4,4'-bipyridinium 1,4-phenylenediacetate (Fig. 1), [C10H10N2][C10H8O4], has inversion centres located on the geometric centres of the 1,4-phenylenediacetate anion and 4,4'-bipyridinium cation. Each 4,4'-bipyridinium cation connects two 1,4-phenylenediacetate anions via N—H···O hydrogen bonds (Table 1), and vice versa. This leads to the formation of one dimensional supramolecular chains as shown in Fig. 2. The neighboring pyridyl rings from the adjacent one chains parallel to each other with perpendicular distance of 3.5654 (4) Å, a centre-to-centre distance of 3.938 (2) Å and an off-set angle of 25.135 (7)°. These information suggest the existence of significant π···π stacking interaction between the two pyridyl rings, which results in the construction of two dimensional supramolecular sheets (Fig. 2) from the one dimensional chains.