organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-eth­oxy­anilinium) sulfate trihydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 7 September 2009; accepted 8 September 2009; online 26 September 2009)

The structure of the title compound, 2C8H12NO+·SO42−·3H2O, consists of organic layers, water mol­ecules and SO42− anions which lie within the organic layers. In the crystal, inter­molecular N—H⋯O, N—H⋯S O—H⋯O and O—H⋯S hydrogen bonds, some of which are bifurcated, stabilize the structure.

Related literature

For background to this study, see: Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]); Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H12NO+·SO42−·3H2O

  • Mr = 426.48

  • Triclinic, [P \overline 1]

  • a = 7.0455 (14) Å

  • b = 10.969 (2) Å

  • c = 13.787 (3) Å

  • α = 101.40 (3)°

  • β = 94.53 (3)°

  • γ = 90.18 (3)°

  • V = 1041.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.96, Tmax = 0.96

  • 10835 measured reflections

  • 4748 independent reflections

  • 3947 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 1.10

  • 4748 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1i 0.89 2.05 2.870 (2) 153
N2—H2C⋯S1i 0.89 2.77 3.649 (2) 172
N2—H2D⋯O2ii 0.89 2.07 2.788 (2) 137
N2—H2E⋯O7Wiii 0.89 1.94 2.819 (3) 169
N1—H1D⋯O8Wiii 0.89 2.14 2.823 (2) 133
N1—H1D⋯O9Wii 0.89 2.46 3.166 (3) 136
N1—H1E⋯O3ii 0.89 1.93 2.785 (2) 162
N1—H1F⋯O1iv 0.89 2.03 2.849 (2) 152
O7W—H7D⋯O4v 0.81 (4) 2.11 (4) 2.893 (3) 163 (3)
O8W—H8D⋯O4vi 0.75 (3) 2.12 (3) 2.864 (3) 172 (3)
O9W—H9E⋯O1vii 0.92 (4) 2.07 (4) 2.991 (3) 175 (4)
O9W—H9E⋯S1vii 0.92 (4) 2.98 (4) 3.791 (2) 147 (3)
O7W—H7C⋯O2 0.83 (4) 2.05 (4) 2.851 (3) 164 (3)
O8W—H8C⋯O3 0.90 (4) 1.94 (4) 2.815 (3) 164 (3)
O8W—H8C⋯S1 0.90 (4) 3.02 (4) 3.852 (2) 154 (3)
O9W—H9D⋯O4 1.03 (5) 2.00 (5) 2.981 (3) 158 (4)
O9W—H9D⋯S1 1.03 (5) 2.81 (5) 3.547 (2) 129 (3)
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x-1, y-1, z-1; (v) -x+2, -y+1, -z+2; (vi) -x+2, -y+2, -z+2; (vii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

This study is a part of systematic investigation of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal–organic coordination compounds (Hang et al., 2009) and organic–inorganic hybrid. 4-Ethoxyanilinium perchlorate has no dielectric disuniform from 80 K to 480 K, (m.p. 492–493 K).

The asymmetric unit of the title compound contains two 4-ethoxyanilinium cations, one sulfate radical anion and three water molecules (Fig 1). In the anion, the torsion angles of C1—C2—O5—C3 and C9—C10—O6—C11 are -174.8 (2)° and 179.48 (19)°, respectively. The supramolecular structure consists of infinite chains of anions with one cation and three water molecules linked to each anion via N—H···O and O—H···O hydrogen bonds.

Related literature top

For background to this study, see: Hang et al. (2009); Li et al. (2008).

Experimental top

Single crystals of 4-ethoxyanilinium sulfate are prepared by slow evaporation for five days at room temperature of an ethanol solution of 4-ethoxybenzenamine and sulfuric acid (5 mol l-).

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Bis(4-ethoxyanilinium) sulfate trihydrate top
Crystal data top
2C8H12NO+·SO42·3H2OZ = 2
Mr = 426.48F(000) = 456
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0455 (14) ÅCell parameters from 5008 reflections
b = 10.969 (2) Åθ = 3.0–27.6°
c = 13.787 (3) ŵ = 0.21 mm1
α = 101.40 (3)°T = 298 K
β = 94.53 (3)°Prism, colourless
γ = 90.18 (3)°0.20 × 0.20 × 0.20 mm
V = 1041.0 (4) Å3
Data collection top
Rigaku SCXmini
diffractometer
4748 independent reflections
Radiation source: fine-focus sealed tube3947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.96, Tmax = 0.96l = 1717
10835 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.4014P]
where P = (Fo2 + 2Fc2)/3
4748 reflections(Δ/σ)max = 0.011
277 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
2C8H12NO+·SO42·3H2Oγ = 90.18 (3)°
Mr = 426.48V = 1041.0 (4) Å3
Triclinic, P1Z = 2
a = 7.0455 (14) ÅMo Kα radiation
b = 10.969 (2) ŵ = 0.21 mm1
c = 13.787 (3) ÅT = 298 K
α = 101.40 (3)°0.20 × 0.20 × 0.20 mm
β = 94.53 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4748 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3947 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.96Rint = 0.041
10835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.30 e Å3
4748 reflectionsΔρmin = 0.62 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.0896 (3)0.6806 (2)0.58350 (17)0.0449 (5)
H10A0.03960.66350.55380.054*
H10B0.12510.76480.57910.054*
C130.1606 (3)0.6525 (2)0.27781 (16)0.0376 (5)
H13A0.09810.70460.24060.045*
C140.2775 (3)0.56205 (18)0.23343 (15)0.0298 (4)
C110.2290 (3)0.5885 (2)0.43338 (15)0.0338 (4)
C160.3460 (3)0.4968 (2)0.38719 (16)0.0405 (5)
H16A0.40830.44400.42380.049*
C120.1355 (3)0.6664 (2)0.37864 (17)0.0394 (5)
H12A0.05640.72760.40890.047*
C150.3701 (3)0.4838 (2)0.28761 (16)0.0383 (5)
H15A0.44870.42240.25700.046*
N20.2998 (2)0.54499 (16)0.12718 (12)0.0323 (4)
H2C0.23250.60160.10200.049*
H2D0.25830.46920.09710.049*
H2E0.42220.55380.11770.049*
O60.2170 (2)0.59385 (16)0.53274 (11)0.0454 (4)
C70.4295 (3)0.1249 (2)0.29676 (16)0.0383 (5)
H7A0.52850.15910.26950.046*
C80.4180 (3)0.1505 (2)0.39883 (16)0.0402 (5)
H8A0.50880.20200.44000.048*
C60.2953 (3)0.04922 (18)0.23606 (14)0.0284 (4)
C30.2702 (3)0.09881 (19)0.43898 (15)0.0329 (4)
C50.1461 (3)0.0017 (2)0.27536 (15)0.0348 (5)
H5A0.05500.05250.23380.042*
C40.1337 (3)0.0235 (2)0.37657 (16)0.0365 (5)
H4A0.03330.01010.40330.044*
N10.3073 (2)0.02291 (16)0.12851 (12)0.0316 (4)
H1D0.40930.06170.11400.047*
H1E0.20310.04970.09910.047*
H1F0.31680.05870.10700.047*
O40.8618 (2)0.76777 (14)1.06802 (12)0.0419 (4)
O30.9964 (2)0.84402 (14)0.93687 (12)0.0411 (4)
O11.2016 (2)0.76811 (14)1.05715 (11)0.0376 (3)
C90.1020 (4)0.6671 (3)0.69069 (18)0.0547 (7)
H9A0.01830.72500.72680.082*
H9B0.23040.68390.71920.082*
H9C0.06510.58390.69420.082*
C20.3919 (3)0.1835 (2)0.60656 (16)0.0435 (5)
H2A0.40210.26880.59760.052*
H2B0.51360.14420.59560.052*
S11.01303 (6)0.75062 (4)0.99930 (3)0.02523 (14)
O21.0005 (2)0.62454 (13)0.93962 (12)0.0415 (4)
O50.2452 (2)0.11746 (16)0.53811 (11)0.0425 (4)
C10.3390 (4)0.1809 (3)0.70955 (17)0.0509 (6)
H1A0.43440.22520.75720.076*
H1B0.33070.09620.71780.076*
H1C0.21810.21950.71950.076*
O7W1.3057 (3)0.4580 (2)0.89486 (15)0.0507 (5)
O8W1.2987 (2)0.98944 (19)0.89593 (15)0.0476 (4)
O9W0.5193 (3)0.7333 (2)0.92324 (17)0.0644 (5)
H7D1.249 (5)0.393 (3)0.893 (2)0.072 (10)*
H8D1.255 (4)1.052 (3)0.899 (2)0.050 (9)*
H7C1.227 (5)0.514 (3)0.900 (2)0.067 (10)*
H9E0.427 (6)0.747 (4)0.968 (3)0.104 (14)*
H8C1.209 (5)0.932 (3)0.899 (2)0.077 (10)*
H9D0.614 (7)0.757 (4)0.985 (3)0.132 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0433 (13)0.0460 (13)0.0452 (13)0.0036 (10)0.0118 (10)0.0049 (10)
C130.0376 (11)0.0343 (11)0.0436 (12)0.0107 (9)0.0059 (9)0.0127 (9)
C140.0276 (9)0.0277 (10)0.0337 (10)0.0022 (7)0.0035 (8)0.0046 (8)
C110.0329 (10)0.0346 (11)0.0332 (10)0.0009 (8)0.0020 (8)0.0052 (8)
C160.0423 (12)0.0400 (12)0.0384 (11)0.0140 (9)0.0019 (9)0.0074 (9)
C120.0380 (11)0.0363 (11)0.0446 (12)0.0119 (9)0.0102 (9)0.0065 (9)
C150.0364 (11)0.0360 (11)0.0406 (11)0.0127 (9)0.0018 (9)0.0033 (9)
N20.0330 (9)0.0299 (9)0.0346 (9)0.0019 (7)0.0048 (7)0.0068 (7)
O60.0510 (10)0.0508 (10)0.0346 (8)0.0146 (8)0.0059 (7)0.0073 (7)
C70.0361 (11)0.0389 (12)0.0402 (11)0.0116 (9)0.0133 (9)0.0047 (9)
C80.0392 (11)0.0429 (12)0.0354 (11)0.0152 (9)0.0078 (9)0.0019 (9)
C60.0299 (9)0.0252 (9)0.0310 (10)0.0029 (7)0.0069 (7)0.0059 (7)
C30.0324 (10)0.0327 (10)0.0335 (10)0.0011 (8)0.0081 (8)0.0045 (8)
C50.0317 (10)0.0363 (11)0.0362 (11)0.0081 (8)0.0022 (8)0.0071 (8)
C40.0309 (10)0.0431 (12)0.0375 (11)0.0099 (9)0.0080 (8)0.0107 (9)
N10.0322 (9)0.0316 (9)0.0319 (9)0.0001 (7)0.0067 (7)0.0068 (7)
O40.0408 (9)0.0383 (9)0.0515 (9)0.0061 (7)0.0238 (7)0.0126 (7)
O30.0387 (8)0.0403 (9)0.0517 (9)0.0021 (6)0.0062 (7)0.0261 (7)
O10.0327 (8)0.0346 (8)0.0450 (9)0.0015 (6)0.0045 (6)0.0098 (6)
C90.0543 (15)0.0663 (17)0.0406 (13)0.0081 (13)0.0121 (11)0.0005 (12)
C20.0406 (12)0.0485 (13)0.0379 (12)0.0098 (10)0.0048 (9)0.0006 (10)
S10.0243 (2)0.0203 (2)0.0323 (3)0.00085 (16)0.00592 (18)0.00655 (17)
O20.0384 (8)0.0265 (8)0.0552 (10)0.0019 (6)0.0070 (7)0.0040 (7)
O50.0378 (8)0.0560 (10)0.0318 (8)0.0121 (7)0.0067 (6)0.0029 (7)
C10.0497 (14)0.0651 (17)0.0361 (12)0.0007 (12)0.0038 (10)0.0052 (11)
O7W0.0384 (9)0.0393 (10)0.0775 (13)0.0026 (8)0.0194 (9)0.0133 (9)
O8W0.0383 (9)0.0386 (10)0.0700 (12)0.0061 (8)0.0199 (8)0.0146 (9)
O9W0.0516 (11)0.0690 (14)0.0738 (14)0.0023 (10)0.0175 (11)0.0121 (11)
Geometric parameters (Å, º) top
C10—O61.430 (3)C3—C41.390 (3)
C10—C91.510 (3)C5—C41.378 (3)
C10—H10A0.9700C5—H5A0.9300
C10—H10B0.9700C4—H4A0.9300
C13—C141.372 (3)N1—H1D0.8900
C13—C121.394 (3)N1—H1E0.8900
C13—H13A0.9300N1—H1F0.8900
C14—C151.378 (3)O4—S11.4693 (15)
C14—N21.461 (3)O3—S11.4621 (15)
C11—O61.369 (3)O1—S11.4861 (15)
C11—C121.383 (3)C9—H9A0.9600
C11—C161.389 (3)C9—H9B0.9600
C16—C151.376 (3)C9—H9C0.9600
C16—H16A0.9300C2—O51.434 (3)
C12—H12A0.9300C2—C11.502 (3)
C15—H15A0.9300C2—H2A0.9700
N2—H2C0.8900C2—H2B0.9700
N2—H2D0.8900S1—O21.4613 (15)
N2—H2E0.8900C1—H1A0.9600
C7—C61.371 (3)C1—H1B0.9600
C7—C81.389 (3)C1—H1C0.9600
C7—H7A0.9300O7W—H7D0.81 (4)
C8—C31.386 (3)O7W—H7C0.83 (4)
C8—H8A0.9300O8W—H8D0.75 (3)
C6—C51.384 (3)O8W—H8C0.90 (4)
C6—N11.463 (2)O9W—H9E0.92 (4)
C3—O51.367 (2)O9W—H9D1.03 (5)
O6—C10—C9107.7 (2)C8—C3—C4119.69 (19)
O6—C10—H10A110.2C4—C5—C6119.50 (19)
C9—C10—H10A110.2C4—C5—H5A120.2
O6—C10—H10B110.2C6—C5—H5A120.2
C9—C10—H10B110.2C5—C4—C3120.39 (19)
H10A—C10—H10B108.5C5—C4—H4A119.8
C14—C13—C12120.0 (2)C3—C4—H4A119.8
C14—C13—H13A120.0C6—N1—H1D109.5
C12—C13—H13A120.0C6—N1—H1E109.5
C13—C14—C15120.56 (19)H1D—N1—H1E109.5
C13—C14—N2120.11 (18)C6—N1—H1F109.5
C15—C14—N2119.29 (18)H1D—N1—H1F109.5
O6—C11—C12124.93 (19)H1E—N1—H1F109.5
O6—C11—C16115.39 (19)C10—C9—H9A109.5
C12—C11—C16119.7 (2)C10—C9—H9B109.5
C15—C16—C11120.4 (2)H9A—C9—H9B109.5
C15—C16—H16A119.8C10—C9—H9C109.5
C11—C16—H16A119.8H9A—C9—H9C109.5
C11—C12—C13119.60 (19)H9B—C9—H9C109.5
C11—C12—H12A120.2O5—C2—C1107.52 (19)
C13—C12—H12A120.2O5—C2—H2A110.2
C16—C15—C14119.79 (19)C1—C2—H2A110.2
C16—C15—H15A120.1O5—C2—H2B110.2
C14—C15—H15A120.1C1—C2—H2B110.2
C14—N2—H2C109.5H2A—C2—H2B108.5
C14—N2—H2D109.5O2—S1—O3111.43 (10)
H2C—N2—H2D109.5O2—S1—O4109.70 (10)
C14—N2—H2E109.5O3—S1—O4109.51 (9)
H2C—N2—H2E109.5O2—S1—O1108.58 (9)
H2D—N2—H2E109.5O3—S1—O1108.27 (9)
C11—O6—C10118.27 (18)O4—S1—O1109.31 (10)
C6—C7—C8120.18 (19)C3—O5—C2118.10 (16)
C6—C7—H7A119.9C2—C1—H1A109.5
C8—C7—H7A119.9C2—C1—H1B109.5
C3—C8—C7119.60 (19)H1A—C1—H1B109.5
C3—C8—H8A120.2C2—C1—H1C109.5
C7—C8—H8A120.2H1A—C1—H1C109.5
C7—C6—C5120.63 (19)H1B—C1—H1C109.5
C7—C6—N1120.03 (17)H7D—O7W—H7C108 (3)
C5—C6—N1119.33 (18)H8D—O8W—H8C111 (3)
O5—C3—C8124.56 (19)H9E—O9W—H9D85 (3)
O5—C3—C4115.74 (18)
C12—C13—C14—C150.4 (3)C6—C7—C8—C30.2 (4)
C12—C13—C14—N2178.24 (19)C8—C7—C6—C50.5 (3)
O6—C11—C16—C15179.3 (2)C8—C7—C6—N1179.7 (2)
C12—C11—C16—C150.4 (3)C7—C8—C3—O5179.9 (2)
O6—C11—C12—C13179.3 (2)C7—C8—C3—C41.0 (4)
C16—C11—C12—C130.4 (3)C7—C6—C5—C40.4 (3)
C14—C13—C12—C110.0 (3)N1—C6—C5—C4179.62 (19)
C11—C16—C15—C140.1 (3)C6—C5—C4—C30.4 (3)
C13—C14—C15—C160.3 (3)O5—C3—C4—C5179.7 (2)
N2—C14—C15—C16178.2 (2)C8—C3—C4—C51.1 (3)
C12—C11—O6—C104.3 (3)C8—C3—O5—C27.2 (3)
C16—C11—O6—C10176.0 (2)C4—C3—O5—C2173.6 (2)
C9—C10—O6—C11179.48 (19)C1—C2—O5—C3174.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1i0.892.052.870 (2)153
N2—H2C···S1i0.892.773.649 (2)172
N2—H2D···O2ii0.892.072.788 (2)137
N2—H2E···O7Wiii0.891.942.819 (3)169
N1—H1D···O8Wiii0.892.142.823 (2)133
N1—H1D···O9Wii0.892.463.166 (3)136
N1—H1E···O3ii0.891.932.785 (2)162
N1—H1F···O1iv0.892.032.849 (2)152
O7W—H7D···O4v0.81 (4)2.11 (4)2.893 (3)163 (3)
O8W—H8D···O4vi0.75 (3)2.12 (3)2.864 (3)172 (3)
O9W—H9E···O1vii0.92 (4)2.07 (4)2.991 (3)175 (4)
O9W—H9E···S1vii0.92 (4)2.98 (4)3.791 (2)147 (3)
O7W—H7C···O20.83 (4)2.05 (4)2.851 (3)164 (3)
O8W—H8C···O30.90 (4)1.94 (4)2.815 (3)164 (3)
O8W—H8C···S10.90 (4)3.02 (4)3.852 (2)154 (3)
O9W—H9D···O41.03 (5)2.00 (5)2.981 (3)158 (4)
O9W—H9D···S11.03 (5)2.81 (5)3.547 (2)129 (3)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x1, y1, z1; (v) x+2, y+1, z+2; (vi) x+2, y+2, z+2; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula2C8H12NO+·SO42·3H2O
Mr426.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0455 (14), 10.969 (2), 13.787 (3)
α, β, γ (°)101.40 (3), 94.53 (3), 90.18 (3)
V3)1041.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.96, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
10835, 4748, 3947
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.10
No. of reflections4748
No. of parameters277
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.62

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1i0.892.052.870 (2)153.2
N2—H2C···S1i0.892.773.649 (2)171.6
N2—H2D···O2ii0.892.072.788 (2)137.4
N2—H2E···O7Wiii0.891.942.819 (3)168.8
N1—H1D···O8Wiii0.892.142.823 (2)132.8
N1—H1D···O9Wii0.892.463.166 (3)136.3
N1—H1E···O3ii0.891.932.785 (2)161.8
N1—H1F···O1iv0.892.032.849 (2)152.2
O7W—H7D···O4v0.81 (4)2.11 (4)2.893 (3)163 (3)
O8W—H8D···O4vi0.75 (3)2.12 (3)2.864 (3)172 (3)
O9W—H9E···O1vii0.92 (4)2.07 (4)2.991 (3)175 (4)
O9W—H9E···S1vii0.92 (4)2.98 (4)3.791 (2)147 (3)
O7W—H7C···O20.83 (4)2.05 (4)2.851 (3)164 (3)
O8W—H8C···O30.90 (4)1.94 (4)2.815 (3)164 (3)
O8W—H8C···S10.90 (4)3.02 (4)3.852 (2)154 (3)
O9W—H9D···O41.03 (5)2.00 (5)2.981 (3)158 (4)
O9W—H9D···S11.03 (5)2.81 (5)3.547 (2)129 (3)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x1, y1, z1; (v) x+2, y+1, z+2; (vi) x+2, y+2, z+2; (vii) x1, y, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds