organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-1-methyl­imidazolium picrate

aHubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
*Correspondence e-mail: cmjin@email.hbnu.edu.cn

(Received 24 August 2009; accepted 2 September 2009; online 9 September 2009)

In the title salt, C11H13N2+·C6H2N3O7, the dihedral angles between the benzene ring in the cation and the imidazolium ring and the benzene ring of the picrate anion are 113.7 (2) and 116.3 (2)°, respectively. The imidazolium ring is nearly parallel to the benzene ring of the picrate anion, the dihedral angle between the planes being 2.6 (1)°. The nitro groups in the picrate anions are disordered (occupancy ratio 0.54:0.46). The crystal packing is stabilized by weak C—H⋯O inter­actions between the cation–anion pairs.

Related literature

For civilian and military applications of energetic materials, see: Sikder & Sikder (2004[Sikder, A. K. & Sikder, N. J. (2004). J. Hazardous Materials A, 112, 1-15.]). Heterocyclic organic salts with low melting points are a new class of energetic materials, which have attracted considerable inter­est because of their `green chemistry' properties, see: Singh et al. (2006[Singh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584-3601.]). Picric acid is a polynitro­gen compound with explosive character and imidazolium-based cation picrate salts are good candidates for energetic ionic salts, see: Jin et al. (2005[Jin, C. M., Ye, C., Piekarski, C., Twamley, B. & Shreeve, J. M. (2005). Eur. J. Inorg. Chem. pp. 3760-3767.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N2+·C6H2N3O7

  • Mr = 401.34

  • Triclinic, [P \overline 1]

  • a = 9.1322 (6) Å

  • b = 10.2060 (7) Å

  • c = 10.8744 (7) Å

  • α = 63.6190 (10)°

  • β = 80.1660 (10)°

  • γ = 86.4820 (10)°

  • V = 894.52 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.988

  • 5623 measured reflections

  • 3447 independent reflections

  • 2610 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.144

  • S = 1.04

  • 3447 reflections

  • 320 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯O7i 0.96 2.42 3.346 (10) 162
C14—H14⋯O5ii 0.93 2.39 3.283 (11) 161
C17—H17A⋯O2iii 0.96 2.32 3.205 (11) 153
C16—H16⋯O2iii 0.93 2.39 3.159 (9) 140
C16—H16⋯O1iii 0.93 2.19 3.021 (2) 149
C13—H13A⋯O1iii 0.97 2.58 3.382 (3) 140
C17—H17C⋯O7i 0.96 2.42 3.346 (10) 162
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Energetic materials are used extensively for both civilian and military applications (Sikder & Sikder, 2004). Heterocyclic organic salts with low melting points are a new class of energetic materials that has attracted considerable interest because of their "green chemistry" properties (Singh et al., 2006). Picric acid is a polynitrogen compound with explosive character and imidazolium-based cation picrate salts are good candidates for energetic ionic salts (Jin et al., 2005). Based on our continued interest in these compounds, the title organic salt (scheme 1) was prepared and its structure is reported.

The asymmetric unit of the title compound contains one independent cation (1-methyl-3-benzenylimidazolium)-anion (picrate) pair (Fig. 1). The dihedral angle between the benzene ring in the cation and the imidazolium ring and the benzene ring of the picrate anion is 113.7 (2)° and 116.3 (2) °, respectively. The imidazolium ring is nearly parallel to the benzene ring of the picrate anion with the dihedral angle of separation being 2.6 (1)°. The oxygen atoms in the nitro groups of the picrate anion are disorderd with the o-NO2 major components (O2, O3, O4, O5) being 0.54 occupied and the p-NO2major components (O5, O6) at 0.58 occupancy . Crystal packing is stabilized by the weak C—H···O interactions between the cation-anion pairs (Fig. 2, Table 1).

Related literature top

For civilian and military applications of energetic materials, see: Sikder & Sikder (2004). Heterocyclic organic salts with low melting points are a new class of energetic materials, which have attracted considerable interest because of their `green chemistry' properties, see: Singh et al. (2006). Picric acid is a polynitrogen compound with explosive character and imidazolium-based cation picrate salts are good candidates for energetic ionic salts, see: Jin et al. (2005).

Experimental top

The title salt (C11H13N2)+.(C6H2N3O7)- was synthesized using a slightly modified literature mothod (Jin et al., 2005). It was crystallized by slow evaporation of an acetonitrile and methanol solution of the salt.

Refinement top

H atoms were positioned geometrically with C—H bond lengths fixed to 0.93 (aromatic CH),0.97 (methylene CH2) or 0.96Å (methyl CH3). A riding model was used during the refinement process. The Uiso parameters for H atoms were constrained to be 1.2Ueq of the carrier C atom for aromatic and methylene groups, and 1.5Ueq of the carrier C atom for methyl groups. Measured Friedel pairs were merged before refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. Only the predominate nitro oxygen atoms are displayed for the disordered nitro groups [O2,O3,O4,O5 (0.54); O6,O7 (0.58)].
[Figure 2] Fig. 2. The molecular packing diagram of the title compound. Dashed lines indicate weak C—H···O hydrogen bonding interactions between the cation-anion pairs (Table 1). Both of the disordered oxygen atoms in the nitro groups of the picrate anions are displayed.
3-Benzyl-1-methylimidazolium picrate top
Crystal data top
C11H13N2+·C6H2N3O7Z = 2
Mr = 401.34F(000) = 416
Triclinic, P1Dx = 1.490 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1322 (6) ÅCell parameters from 1924 reflections
b = 10.2060 (7) Åθ = 2.2–26.5°
c = 10.8744 (7) ŵ = 0.12 mm1
α = 63.619 (1)°T = 298 K
β = 80.166 (1)°Block, yellow
γ = 86.482 (1)°0.20 × 0.10 × 0.10 mm
V = 894.52 (10) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3447 independent reflections
Radiation source: fine-focus sealed tube2610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.986, Tmax = 0.988k = 1212
5623 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0707P)2]
where P = (Fo2 + 2Fc2)/3
3447 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.35 e Å3
15 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H13N2+·C6H2N3O7γ = 86.482 (1)°
Mr = 401.34V = 894.52 (10) Å3
Triclinic, P1Z = 2
a = 9.1322 (6) ÅMo Kα radiation
b = 10.2060 (7) ŵ = 0.12 mm1
c = 10.8744 (7) ÅT = 298 K
α = 63.619 (1)°0.20 × 0.10 × 0.10 mm
β = 80.166 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2610 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.988Rint = 0.046
5623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05615 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
3447 reflectionsΔρmin = 0.24 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6669 (2)0.9523 (2)0.3757 (2)0.0412 (5)
C20.5960 (2)0.8381 (2)0.50638 (19)0.0391 (5)
C30.4985 (2)0.7359 (2)0.5166 (2)0.0417 (5)
H30.45820.66390.60350.050*
C40.4602 (2)0.7397 (2)0.3977 (2)0.0421 (5)
C50.5191 (2)0.8461 (2)0.2678 (2)0.0435 (5)
H50.49120.84960.18810.052*
C60.6182 (2)0.9453 (2)0.25820 (19)0.0409 (5)
C70.9029 (2)0.4665 (2)0.16740 (19)0.0448 (5)
C80.7605 (3)0.4513 (3)0.1476 (2)0.0602 (6)
H80.72170.35840.17540.072*
C90.6758 (3)0.5720 (4)0.0873 (3)0.0767 (8)
H90.58030.56060.07410.092*
C100.7316 (3)0.7092 (3)0.0466 (2)0.0736 (8)
H100.67400.79080.00580.088*
C110.8721 (3)0.7263 (3)0.0659 (2)0.0670 (7)
H110.90970.81940.03900.080*
C120.9572 (3)0.6063 (2)0.1247 (2)0.0525 (6)
H121.05320.61880.13620.063*
C130.9942 (3)0.3344 (2)0.2325 (2)0.0516 (6)
H13A0.95260.25250.22670.062*
H13B1.09440.35260.18070.062*
C141.0841 (2)0.3658 (2)0.4261 (2)0.0495 (5)
H141.14770.44570.37130.059*
C151.0570 (2)0.2983 (2)0.5651 (2)0.0492 (5)
H151.09880.32210.62490.059*
C160.9239 (2)0.1884 (2)0.4886 (2)0.0428 (5)
H160.85810.12430.48550.051*
C170.9006 (3)0.0830 (3)0.7460 (2)0.0630 (7)
H17A0.82310.02350.74600.094*
H17B0.86170.13490.79930.094*
H17C0.98020.02180.78660.094*
N10.6315 (2)0.8244 (2)0.63649 (18)0.0492 (5)
N20.3603 (2)0.6289 (2)0.4097 (2)0.0525 (5)
N30.6791 (2)1.0516 (2)0.11900 (19)0.0537 (5)
N41.00040 (18)0.29513 (17)0.37987 (16)0.0416 (4)
N50.95646 (18)0.18786 (18)0.60292 (16)0.0436 (4)
O10.75553 (19)1.04635 (18)0.36201 (16)0.0646 (5)
O20.6926 (10)0.9248 (11)0.6410 (15)0.064 (2)0.54
O30.6079 (6)0.7030 (6)0.7381 (6)0.0693 (15)0.54
O40.3127 (14)0.5302 (14)0.5267 (10)0.091 (4)0.54
O50.3362 (16)0.6282 (15)0.3029 (9)0.093 (4)0.54
O60.5945 (15)1.1147 (16)0.0366 (15)0.104 (4)0.58
O70.8115 (7)1.0704 (12)0.0890 (11)0.075 (2)0.58
O2'0.5492 (7)0.7504 (8)0.7465 (7)0.0700 (18)0.46
O3'0.7363 (11)0.8962 (12)0.6320 (17)0.060 (2)0.46
O5'0.3250 (14)0.6386 (14)0.3006 (8)0.061 (3)0.46
O4'0.3061 (11)0.5414 (13)0.5233 (7)0.047 (2)0.46
O6'0.616 (2)1.073 (2)0.027 (2)0.094 (5)0.42
O7'0.7953 (14)1.1148 (18)0.0970 (19)0.114 (6)0.42
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (10)0.0434 (11)0.0450 (11)0.0048 (9)0.0101 (9)0.0205 (9)
C20.0363 (10)0.0451 (11)0.0391 (11)0.0023 (9)0.0108 (8)0.0197 (9)
C30.0372 (11)0.0410 (11)0.0427 (11)0.0032 (9)0.0058 (9)0.0143 (9)
C40.0377 (10)0.0424 (11)0.0492 (12)0.0051 (9)0.0082 (9)0.0218 (10)
C50.0415 (11)0.0514 (12)0.0448 (11)0.0017 (9)0.0117 (9)0.0257 (10)
C60.0392 (11)0.0431 (11)0.0383 (10)0.0037 (9)0.0064 (8)0.0155 (9)
C70.0523 (12)0.0520 (12)0.0282 (10)0.0094 (10)0.0025 (9)0.0177 (9)
C80.0590 (15)0.0666 (16)0.0465 (13)0.0155 (13)0.0010 (11)0.0180 (12)
C90.0572 (16)0.106 (2)0.0563 (16)0.0023 (16)0.0112 (13)0.0260 (16)
C100.085 (2)0.0757 (19)0.0474 (14)0.0179 (16)0.0074 (14)0.0192 (13)
C110.097 (2)0.0537 (15)0.0442 (13)0.0012 (14)0.0074 (13)0.0168 (11)
C120.0646 (14)0.0521 (14)0.0380 (11)0.0117 (11)0.0067 (10)0.0164 (10)
C130.0612 (14)0.0543 (13)0.0407 (11)0.0084 (11)0.0008 (10)0.0242 (10)
C140.0472 (12)0.0419 (12)0.0629 (14)0.0066 (10)0.0119 (10)0.0242 (11)
C150.0530 (13)0.0469 (12)0.0599 (14)0.0027 (10)0.0239 (11)0.0293 (11)
C160.0446 (11)0.0424 (11)0.0447 (11)0.0041 (9)0.0116 (9)0.0199 (9)
C170.0752 (16)0.0644 (15)0.0433 (13)0.0063 (13)0.0174 (11)0.0147 (11)
N10.0475 (11)0.0565 (12)0.0424 (10)0.0041 (9)0.0111 (8)0.0188 (9)
N20.0482 (11)0.0498 (12)0.0635 (13)0.0084 (9)0.0101 (11)0.0272 (11)
N30.0581 (13)0.0584 (12)0.0426 (11)0.0144 (10)0.0124 (10)0.0170 (9)
N40.0448 (9)0.0405 (9)0.0417 (9)0.0045 (8)0.0063 (7)0.0196 (8)
N50.0471 (10)0.0443 (10)0.0427 (10)0.0013 (8)0.0156 (8)0.0191 (8)
O10.0735 (11)0.0697 (11)0.0521 (9)0.0361 (9)0.0076 (8)0.0242 (8)
O20.083 (5)0.064 (4)0.055 (3)0.012 (4)0.016 (4)0.032 (3)
O30.081 (4)0.077 (4)0.039 (2)0.019 (3)0.011 (3)0.013 (2)
O40.099 (7)0.054 (5)0.108 (7)0.019 (5)0.016 (5)0.023 (5)
O50.119 (8)0.103 (7)0.089 (8)0.022 (5)0.024 (5)0.066 (6)
O60.086 (4)0.118 (8)0.062 (5)0.003 (5)0.028 (3)0.005 (4)
O70.044 (2)0.096 (5)0.056 (3)0.021 (2)0.0098 (19)0.011 (3)
O2'0.068 (4)0.094 (5)0.040 (2)0.026 (3)0.000 (3)0.022 (3)
O3'0.064 (5)0.067 (5)0.058 (4)0.014 (4)0.021 (4)0.031 (3)
O5'0.063 (5)0.059 (5)0.058 (6)0.037 (4)0.017 (4)0.014 (4)
O4'0.048 (4)0.053 (5)0.039 (4)0.031 (4)0.005 (3)0.018 (4)
O6'0.127 (11)0.104 (9)0.047 (4)0.047 (7)0.034 (6)0.017 (5)
O7'0.126 (9)0.122 (11)0.080 (5)0.060 (8)0.017 (6)0.026 (6)
Geometric parameters (Å, º) top
C1—O11.235 (2)C13—H13B0.9700
C1—C21.451 (3)C14—C151.336 (3)
C1—C61.454 (3)C14—N41.371 (3)
C2—C31.368 (3)C14—H140.9300
C2—N11.450 (2)C15—N51.367 (3)
C3—C41.379 (3)C15—H150.9300
C3—H30.9300C16—N41.319 (2)
C4—C51.383 (3)C16—N51.325 (2)
C4—N21.443 (3)C16—H160.9300
C5—C61.357 (3)C17—N51.464 (3)
C5—H50.9300C17—H17A0.9600
C6—N31.451 (3)C17—H17B0.9600
C7—C81.383 (3)C17—H17C0.9600
C7—C121.385 (3)N1—O21.220 (9)
C7—C131.493 (3)N1—O3'1.222 (10)
C8—C91.373 (4)N1—O2'1.235 (7)
C8—H80.9300N1—O31.240 (6)
C9—C101.369 (4)N2—O4'1.197 (7)
C9—H90.9300N2—O51.222 (9)
C10—C111.368 (4)N2—O5'1.243 (9)
C10—H100.9300N2—O41.245 (9)
C11—C121.367 (3)N3—O6'1.168 (11)
C11—H110.9300N3—O71.201 (7)
C12—H120.9300N3—O7'1.208 (11)
C13—N41.480 (3)N3—O61.215 (10)
C13—H13A0.9700
O1—C1—C2126.06 (18)N4—C14—H14126.5
O1—C1—C6122.83 (18)C14—C15—N5107.38 (18)
C2—C1—C6111.10 (16)C14—C15—H15126.3
C3—C2—N1116.05 (17)N5—C15—H15126.3
C3—C2—C1124.07 (18)N4—C16—N5108.52 (17)
N1—C2—C1119.85 (17)N4—C16—H16125.7
C2—C3—C4119.81 (18)N5—C16—H16125.7
C2—C3—H3120.1N5—C17—H17A109.5
C4—C3—H3120.1N5—C17—H17B109.5
C3—C4—C5120.79 (18)H17A—C17—H17B109.5
C3—C4—N2119.28 (18)N5—C17—H17C109.5
C5—C4—N2119.92 (19)H17A—C17—H17C109.5
C6—C5—C4119.12 (19)H17B—C17—H17C109.5
C6—C5—H5120.4O2—N1—O2'112.3 (8)
C4—C5—H5120.4O3'—N1—O2'122.1 (8)
C5—C6—N3116.53 (18)O2—N1—O3122.5 (7)
C5—C6—C1125.09 (18)O3'—N1—O3116.7 (8)
N3—C6—C1118.38 (17)O2—N1—C2120.6 (7)
C8—C7—C12118.2 (2)O3'—N1—C2118.2 (8)
C8—C7—C13120.1 (2)O2'—N1—C2119.5 (4)
C12—C7—C13121.7 (2)O3—N1—C2116.6 (3)
C9—C8—C7120.6 (2)O4'—N2—O5123.1 (7)
C9—C8—H8119.7O4'—N2—O5'123.6 (5)
C7—C8—H8119.7O5—N2—O4122.0 (7)
C10—C9—C8120.2 (3)O5'—N2—O4123.2 (7)
C10—C9—H9119.9O4'—N2—C4118.7 (4)
C8—C9—H9119.9O5—N2—C4118.2 (5)
C11—C10—C9120.1 (3)O5'—N2—C4117.4 (4)
C11—C10—H10120.0O4—N2—C4119.5 (6)
C9—C10—H10120.0O6'—N3—O7115.7 (13)
C12—C11—C10119.9 (2)O6'—N3—O7'120.1 (12)
C12—C11—H11120.0O7—N3—O6122.8 (9)
C10—C11—H11120.0O7'—N3—O6115.6 (13)
C11—C12—C7121.1 (2)O6'—N3—C6119.1 (10)
C11—C12—H12119.5O7—N3—C6118.5 (5)
C7—C12—H12119.5O7'—N3—C6120.8 (9)
N4—C13—C7112.48 (16)O6—N3—C6118.6 (8)
N4—C13—H13A109.1C16—N4—C14108.63 (17)
C7—C13—H13A109.1C16—N4—C13125.71 (16)
N4—C13—H13B109.1C14—N4—C13125.65 (17)
C7—C13—H13B109.1C16—N5—C15108.46 (17)
H13A—C13—H13B107.8C16—N5—C17126.17 (18)
C15—C14—N4107.00 (18)C15—N5—C17125.31 (18)
C15—C14—H14126.5
O1—C1—C2—C3179.9 (2)C3—C2—N1—O2'18.1 (4)
C6—C1—C2—C31.3 (3)C1—C2—N1—O2'164.1 (4)
O1—C1—C2—N12.2 (3)C3—C2—N1—O320.3 (4)
C6—C1—C2—N1178.93 (17)C1—C2—N1—O3157.5 (3)
N1—C2—C3—C4179.13 (17)C3—C4—N2—O4'4.4 (8)
C1—C2—C3—C41.4 (3)C5—C4—N2—O4'177.1 (7)
C2—C3—C4—C50.0 (3)C3—C4—N2—O5174.9 (10)
C2—C3—C4—N2178.38 (18)C5—C4—N2—O53.6 (10)
C3—C4—C5—C61.5 (3)C3—C4—N2—O5'177.9 (9)
N2—C4—C5—C6176.96 (18)C5—C4—N2—O5'3.6 (9)
C4—C5—C6—N3178.34 (19)C3—C4—N2—O41.4 (8)
C4—C5—C6—C11.5 (3)C5—C4—N2—O4177.0 (8)
O1—C1—C6—C5178.7 (2)C5—C6—N3—O6'19.6 (10)
C2—C1—C6—C50.2 (3)C1—C6—N3—O6'160.5 (10)
O1—C1—C6—N31.4 (3)C5—C6—N3—O7130.6 (6)
C2—C1—C6—N3179.67 (17)C1—C6—N3—O749.3 (7)
C12—C7—C8—C90.1 (3)C5—C6—N3—O7'158.5 (9)
C13—C7—C8—C9179.7 (2)C1—C6—N3—O7'21.4 (9)
C7—C8—C9—C100.3 (4)C5—C6—N3—O647.4 (7)
C8—C9—C10—C110.0 (4)C1—C6—N3—O6132.7 (7)
C9—C10—C11—C120.6 (4)N5—C16—N4—C140.4 (2)
C10—C11—C12—C71.0 (3)N5—C16—N4—C13178.99 (17)
C8—C7—C12—C110.7 (3)C15—C14—N4—C160.5 (2)
C13—C7—C12—C11179.68 (19)C15—C14—N4—C13179.14 (19)
C8—C7—C13—N4102.8 (2)C7—C13—N4—C16102.4 (2)
C12—C7—C13—N477.6 (2)C7—C13—N4—C1476.0 (2)
N4—C14—C15—N50.4 (2)N4—C16—N5—C150.1 (2)
C3—C2—N1—O2165.4 (5)N4—C16—N5—C17177.20 (19)
C1—C2—N1—O216.8 (5)C14—C15—N5—C160.2 (2)
C3—C2—N1—O3'167.5 (6)C14—C15—N5—C17177.5 (2)
C1—C2—N1—O3'10.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O7i0.962.423.346 (10)162
C14—H14···O5ii0.932.393.283 (11)161
C17—H17A···O2iii0.962.323.205 (11)153
C16—H16···O2iii0.932.393.159 (9)140
C16—H16···O1iii0.932.193.021 (2)149
C13—H13A···O1iii0.972.583.382 (3)140
C17—H17C···O7i0.962.423.346 (10)162
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H13N2+·C6H2N3O7
Mr401.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.1322 (6), 10.2060 (7), 10.8744 (7)
α, β, γ (°)63.619 (1), 80.166 (1), 86.482 (1)
V3)894.52 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.986, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5623, 3447, 2610
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.144, 1.04
No. of reflections3447
No. of parameters320
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.24

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O7i0.962.423.346 (10)161.5
C14—H14···O5ii0.932.393.283 (11)161.0
C17—H17A···O2iii0.962.323.205 (11)153.4
C16—H16···O2iii0.932.393.159 (9)139.5
C16—H16···O1iii0.932.193.021 (2)148.8
C13—H13A···O1iii0.972.583.382 (3)140.4
C17—H17C···O7i0.962.423.346 (10)161.5
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x, y1, z.
 

Acknowledgements

We gratefully acknowledge the financial support of the National Science Funds for Distinguished Young Scholars of Hubei Province (grant No. 2006ABB038), the Outstanding Mid-young Scholars' Programs, Hubei Provincial Department of Education (Q20072203) and the project sponsored by SRF for ROCS, SEM (200724).

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, C. M., Ye, C., Piekarski, C., Twamley, B. & Shreeve, J. M. (2005). Eur. J. Inorg. Chem. pp. 3760–3767.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikder, A. K. & Sikder, N. J. (2004). J. Hazardous Materials A, 112, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationSingh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584–3601.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds