metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[2,2′-(1,10-phenanthrolin-2-ylimino)di­ethanol]cadmium(II)

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: zhangshiguo1970@yahoo.com.cn

(Received 8 July 2009; accepted 16 September 2009; online 19 September 2009)

In the title complex, [CdCl2(C16H17N3O2)], the metal atom exhibits a distorted trigonal-bipyramidal coordination geometry. O—H⋯O and O—H⋯Cl hydrogen bonds involving hydr­oxy groups and one of coordinated Cl atoms link complexes in the crystal packing. There is a ππ stacking inter­action between adjacent 1,10-phenanthroline rings, with a distance of 3.675 (2) Å between the centroids of the pyridine and benzene rings.

Related literature

For related structures, see: Jin & Li (2009[Jin, X. & Li, J. M. (2009). Acta Cryst. E65, o541.]); Zhang et al. (2008[Zhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C16H17N3O2)]

  • Mr = 466.63

  • Monoclinic, P 21 /n

  • a = 7.9435 (15) Å

  • b = 22.548 (4) Å

  • c = 9.5216 (18) Å

  • β = 98.808 (3)°

  • V = 1685.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 298 K

  • 0.24 × 0.11 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.696, Tmax = 0.923

  • 9776 measured reflections

  • 3641 independent reflections

  • 2933 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.087

  • S = 1.03

  • 3641 reflections

  • 217 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N3 2.235 (3)
Cd1—O2 2.279 (2)
Cd1—N2 2.470 (3)
Cd1—Cl1 2.4752 (11)
Cd1—Cl2 2.4800 (10)
N3—Cd1—O2 136.77 (9)
N3—Cd1—N2 72.40 (9)
O2—Cd1—N2 78.60 (9)
N3—Cd1—Cl1 106.83 (7)
O2—Cd1—Cl1 112.94 (7)
N2—Cd1—Cl1 110.02 (7)
N3—Cd1—Cl2 98.90 (8)
O2—Cd1—Cl2 90.69 (7)
N2—Cd1—Cl2 150.32 (7)
Cl1—Cd1—Cl2 99.66 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H7⋯O1i 0.85 1.84 2.670 (4) 165
O1—H6⋯Cl1ii 0.85 2.34 3.157 (3) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and a lot of complexes have been published with this type of ligands (see Zhang et al., 2008). Although compound 2,2'-(1,10-phenanthrolin-2-ylimino)diethanol has been published (see Jin et al., 2009) but its complex has not been available. Herein we report the crystal structure of CdII complex with 2,2'-(1,10-phenanthrolin-2-ylimino)diethanol as the ligand. The Cd1 atom reveals a distorted trigonal bipyramidal coordination (Fig. 1 and Table 1). O—H···O hydrogen bond between hydroxyl groups and O—H···Cl hydrogen bond connect the complexes (Fig. 2 and Table 2). There is a ππ stacking interaction involving symmetry-related 1,10-phenanthroline rings, with the relevant distances being Cg1···Cg2i = 3.675 (2) Å and Cg1···Cg2iperp = 3.509 Å; α is 0.71° [symmetry code: (i) -x, -y, 1 - z; Cg1 and Cg2 are the centroids of C3—C7/N2 ring and C6C7C10C13 ring, respectively; Cg1···Cg2perp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between the Cg1 ring plane and the Cg2 ring plane].

Related literature top

For related structures, see: Jin et al. (2009); Zhang et al. (2008).

Experimental top

10 ml methanol solution of 2,2'-(1,10-phenanthrolin-2-ylimino)diethanol (0.0439 g, 0.155 mmol) was added into 10 ml H2O solution containing CdCl2.2.5 H2O (0.0354 g, 0.155 mmol) and the mixture was stirred for a few m. The colourless single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

HO-bound H atoms were located in a difference Fourier map, and placed in idealised positions with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O); other H atoms were placed in calculated positions with C—H = 0.97 Å for methylene group and C—H = 0.93 Å for 1,10-phenanthroline ring with Uiso(H) = 1.2Ueq(C). All H atoms were refined as riding entities.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Structure of title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure with hydrogen bonds shown as dashed lines.
Dichlorido[2,2'-(1,10-phenanthrolin-2-ylimino)diethanol]cadmium(II) top
Crystal data top
[CdCl2(C16H17N3O2)]F(000) = 928
Mr = 466.63Dx = 1.839 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2277 reflections
a = 7.9435 (15) Åθ = 2.4–24.0°
b = 22.548 (4) ŵ = 1.63 mm1
c = 9.5216 (18) ÅT = 298 K
β = 98.808 (3)°Prism, colourless
V = 1685.3 (5) Å30.24 × 0.11 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3641 independent reflections
Radiation source: fine-focus sealed tube2933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.696, Tmax = 0.923k = 2824
9776 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
3641 reflections(Δ/σ)max = 0.003
217 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
[CdCl2(C16H17N3O2)]V = 1685.3 (5) Å3
Mr = 466.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9435 (15) ŵ = 1.63 mm1
b = 22.548 (4) ÅT = 298 K
c = 9.5216 (18) Å0.24 × 0.11 × 0.05 mm
β = 98.808 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2933 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.923Rint = 0.040
9776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
3641 reflectionsΔρmin = 0.40 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1374 (5)0.21631 (17)0.8042 (4)0.0422 (9)
H1A0.22480.18690.83300.051*
H1B0.18630.24730.75260.051*
C20.0096 (5)0.18806 (15)0.7096 (3)0.0349 (8)
H2A0.06370.15940.76410.042*
H2B0.09310.21830.67610.042*
C30.1122 (4)0.10255 (14)0.5974 (3)0.0289 (7)
C40.1161 (5)0.07105 (15)0.7281 (4)0.0368 (9)
H40.07980.08940.80570.044*
C50.1724 (5)0.01476 (16)0.7386 (4)0.0386 (9)
H50.17200.00590.82310.046*
C60.2315 (4)0.01327 (14)0.6243 (4)0.0316 (8)
C70.2289 (4)0.02028 (14)0.4999 (3)0.0272 (7)
C80.0074 (5)0.19041 (15)0.4534 (4)0.0386 (9)
H8A0.09690.21280.45390.046*
H8B0.01320.16200.37610.046*
C90.1446 (5)0.23235 (16)0.4243 (4)0.0483 (10)
H9A0.10640.25500.33880.058*
H9B0.17240.25980.50300.058*
C100.2929 (5)0.07252 (15)0.6327 (4)0.0418 (9)
H100.29500.09340.71720.050*
C110.3475 (5)0.09907 (16)0.5234 (4)0.0426 (10)
H110.38590.13810.53190.051*
C120.2908 (4)0.00865 (14)0.3824 (4)0.0298 (8)
C130.3472 (4)0.06791 (14)0.3938 (4)0.0351 (8)
C140.4001 (5)0.09367 (17)0.2731 (5)0.0476 (10)
H140.43790.13270.27690.057*
C150.3964 (5)0.06231 (18)0.1520 (5)0.0523 (11)
H150.42970.07960.07190.063*
C160.3424 (5)0.00404 (17)0.1491 (4)0.0452 (10)
H160.34090.01760.06580.054*
Cd10.22860 (3)0.118861 (11)0.25829 (3)0.03483 (11)
Cl10.04098 (14)0.13138 (5)0.09231 (11)0.0546 (3)
Cl20.43311 (13)0.15483 (4)0.10510 (10)0.0440 (2)
N10.0451 (4)0.15814 (11)0.5862 (3)0.0301 (6)
N20.1698 (3)0.07740 (11)0.4860 (3)0.0267 (6)
N30.2925 (4)0.02232 (13)0.2602 (3)0.0335 (7)
O10.0806 (3)0.24096 (10)0.9274 (2)0.0452 (7)
H60.06450.21460.98740.068*
O20.2902 (3)0.19779 (11)0.4069 (3)0.0488 (7)
H70.37660.21870.39770.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.042 (2)0.038 (2)0.0009 (18)0.0019 (18)0.0076 (17)
C20.037 (2)0.037 (2)0.0319 (19)0.0038 (16)0.0070 (16)0.0047 (15)
C30.0278 (18)0.0306 (18)0.0274 (18)0.0018 (14)0.0010 (14)0.0002 (14)
C40.047 (2)0.038 (2)0.0260 (18)0.0003 (17)0.0101 (16)0.0003 (15)
C50.043 (2)0.041 (2)0.031 (2)0.0045 (18)0.0050 (16)0.0087 (16)
C60.0280 (19)0.0268 (18)0.037 (2)0.0029 (14)0.0034 (15)0.0027 (14)
C70.0239 (18)0.0242 (17)0.0321 (18)0.0029 (14)0.0001 (14)0.0000 (13)
C80.045 (2)0.037 (2)0.034 (2)0.0105 (17)0.0083 (17)0.0059 (16)
C90.068 (3)0.034 (2)0.047 (2)0.010 (2)0.022 (2)0.0033 (17)
C100.037 (2)0.034 (2)0.052 (2)0.0017 (17)0.0003 (19)0.0122 (17)
C110.037 (2)0.0249 (19)0.064 (3)0.0020 (16)0.003 (2)0.0088 (18)
C120.0255 (18)0.0251 (17)0.037 (2)0.0037 (14)0.0007 (15)0.0024 (14)
C130.0260 (19)0.0278 (19)0.051 (2)0.0035 (15)0.0043 (16)0.0070 (16)
C140.042 (2)0.031 (2)0.071 (3)0.0002 (18)0.013 (2)0.016 (2)
C150.058 (3)0.048 (3)0.055 (3)0.006 (2)0.025 (2)0.023 (2)
C160.056 (3)0.045 (2)0.037 (2)0.005 (2)0.0134 (19)0.0097 (17)
Cd10.04436 (19)0.03078 (16)0.03027 (16)0.00004 (12)0.00864 (12)0.00178 (11)
Cl10.0468 (6)0.0775 (8)0.0375 (6)0.0090 (5)0.0002 (5)0.0155 (5)
Cl20.0523 (6)0.0405 (5)0.0431 (5)0.0007 (4)0.0191 (5)0.0054 (4)
N10.0351 (17)0.0281 (15)0.0280 (15)0.0048 (12)0.0076 (12)0.0010 (12)
N20.0291 (16)0.0244 (14)0.0262 (15)0.0020 (12)0.0026 (12)0.0003 (11)
N30.0387 (17)0.0314 (16)0.0307 (16)0.0009 (13)0.0061 (13)0.0043 (12)
O10.0655 (19)0.0362 (14)0.0326 (15)0.0092 (13)0.0034 (13)0.0036 (11)
O20.0503 (17)0.0341 (14)0.0693 (19)0.0079 (13)0.0323 (14)0.0100 (13)
Geometric parameters (Å, º) top
C1—O11.431 (4)C9—H9A0.9700
C1—C21.503 (5)C9—H9B0.9700
C1—H1A0.9700C10—C111.329 (5)
C1—H1B0.9700C10—H100.9300
C2—N11.476 (4)C11—C131.420 (5)
C2—H2A0.9700C11—H110.9300
C2—H2B0.9700C12—N31.359 (4)
C3—N21.344 (4)C12—C131.408 (4)
C3—N11.360 (4)C13—C141.408 (5)
C3—C41.429 (4)C14—C151.349 (6)
C4—C51.344 (5)C14—H140.9300
C4—H40.9300C15—C161.381 (5)
C5—C61.400 (5)C15—H150.9300
C5—H50.9300C16—N31.325 (4)
C6—C71.403 (4)C16—H160.9300
C6—C101.420 (4)Cd1—N32.235 (3)
C7—N21.370 (4)Cd1—O22.279 (2)
C7—C121.445 (5)Cd1—N22.470 (3)
C8—N11.450 (4)Cd1—Cl12.4752 (11)
C8—C91.500 (5)Cd1—Cl22.4800 (10)
C8—H8A0.9700O1—H60.8482
C8—H8B0.9700O2—H70.8481
C9—O21.425 (4)
O1—C1—C2110.0 (3)C10—C11—C13120.0 (3)
O1—C1—H1A109.7C10—C11—H11120.0
C2—C1—H1A109.7C13—C11—H11120.0
O1—C1—H1B109.7N3—C12—C13120.6 (3)
C2—C1—H1B109.7N3—C12—C7118.7 (3)
H1A—C1—H1B108.2C13—C12—C7120.7 (3)
N1—C2—C1112.0 (3)C14—C13—C12117.4 (3)
N1—C2—H2A109.2C14—C13—C11123.0 (3)
C1—C2—H2A109.2C12—C13—C11119.6 (3)
N1—C2—H2B109.2C15—C14—C13120.7 (4)
C1—C2—H2B109.2C15—C14—H14119.6
H2A—C2—H2B107.9C13—C14—H14119.6
N2—C3—N1120.2 (3)C14—C15—C16118.8 (4)
N2—C3—C4120.9 (3)C14—C15—H15120.6
N1—C3—C4118.8 (3)C16—C15—H15120.6
C5—C4—C3119.7 (3)N3—C16—C15122.8 (4)
C5—C4—H4120.1N3—C16—H16118.6
C3—C4—H4120.1C15—C16—H16118.6
C4—C5—C6121.1 (3)N3—Cd1—O2136.77 (9)
C4—C5—H5119.5N3—Cd1—N272.40 (9)
C6—C5—H5119.5O2—Cd1—N278.60 (9)
C5—C6—C7116.7 (3)N3—Cd1—Cl1106.83 (7)
C5—C6—C10122.3 (3)O2—Cd1—Cl1112.94 (7)
C7—C6—C10121.0 (3)N2—Cd1—Cl1110.02 (7)
N2—C7—C6123.3 (3)N3—Cd1—Cl298.90 (8)
N2—C7—C12120.1 (3)O2—Cd1—Cl290.69 (7)
C6—C7—C12116.6 (3)N2—Cd1—Cl2150.32 (7)
N1—C8—C9114.7 (3)Cl1—Cd1—Cl299.66 (4)
N1—C8—H8A108.6C3—N1—C8123.9 (3)
C9—C8—H8A108.6C3—N1—C2121.2 (3)
N1—C8—H8B108.6C8—N1—C2114.7 (3)
C9—C8—H8B108.6C3—N2—C7118.2 (3)
H8A—C8—H8B107.6C3—N2—Cd1131.8 (2)
O2—C9—C8107.6 (3)C7—N2—Cd1109.5 (2)
O2—C9—H9A110.2C16—N3—C12119.7 (3)
C8—C9—H9A110.2C16—N3—Cd1121.7 (3)
O2—C9—H9B110.2C12—N3—Cd1118.4 (2)
C8—C9—H9B110.2C1—O1—H6112.3
H9A—C9—H9B108.5C9—O2—Cd1113.5 (2)
C11—C10—C6122.0 (4)C9—O2—H7113.0
C11—C10—H10119.0Cd1—O2—H7118.1
C6—C10—H10119.0
O1—C1—C2—N1175.8 (3)N1—C3—N2—C7176.9 (3)
N2—C3—C4—C52.4 (5)C4—C3—N2—C71.4 (5)
N1—C3—C4—C5176.0 (3)N1—C3—N2—Cd112.5 (5)
C3—C4—C5—C61.6 (5)C4—C3—N2—Cd1169.2 (2)
C4—C5—C6—C70.1 (5)C6—C7—N2—C30.3 (5)
C4—C5—C6—C10179.5 (3)C12—C7—N2—C3179.5 (3)
C5—C6—C7—N21.0 (5)C6—C7—N2—Cd1172.9 (2)
C10—C6—C7—N2179.5 (3)C12—C7—N2—Cd17.9 (3)
C5—C6—C7—C12179.7 (3)N3—Cd1—N2—C3179.4 (3)
C10—C6—C7—C120.2 (5)O2—Cd1—N2—C331.8 (3)
N1—C8—C9—O265.3 (4)Cl1—Cd1—N2—C378.6 (3)
C5—C6—C10—C11179.4 (4)Cl2—Cd1—N2—C3102.6 (3)
C7—C6—C10—C111.2 (5)N3—Cd1—N2—C78.15 (19)
C6—C10—C11—C130.6 (6)O2—Cd1—N2—C7139.4 (2)
N2—C7—C12—N31.4 (5)Cl1—Cd1—N2—C7110.14 (19)
C6—C7—C12—N3179.3 (3)Cl2—Cd1—N2—C768.6 (2)
N2—C7—C12—C13178.1 (3)C15—C16—N3—C121.1 (6)
C6—C7—C12—C131.2 (5)C15—C16—N3—Cd1174.3 (3)
N3—C12—C13—C141.7 (5)C13—C12—N3—C162.2 (5)
C7—C12—C13—C14177.8 (3)C7—C12—N3—C16177.3 (3)
N3—C12—C13—C11178.7 (3)C13—C12—N3—Cd1173.3 (2)
C7—C12—C13—C111.7 (5)C7—C12—N3—Cd17.1 (4)
C10—C11—C13—C14178.7 (4)O2—Cd1—N3—C16133.4 (3)
C10—C11—C13—C120.8 (5)N2—Cd1—N3—C16176.4 (3)
C12—C13—C14—C150.1 (5)Cl1—Cd1—N3—C1670.2 (3)
C11—C13—C14—C15179.6 (4)Cl2—Cd1—N3—C1632.8 (3)
C13—C14—C15—C161.0 (6)O2—Cd1—N3—C1242.1 (3)
C14—C15—C16—N30.6 (6)N2—Cd1—N3—C128.1 (2)
N2—C3—N1—C89.4 (5)Cl1—Cd1—N3—C12114.3 (2)
C4—C3—N1—C8169.0 (3)Cl2—Cd1—N3—C12142.7 (2)
N2—C3—N1—C2176.3 (3)C8—C9—O2—Cd147.5 (3)
C4—C3—N1—C25.3 (5)N3—Cd1—O2—C9133.1 (2)
C9—C8—N1—C395.7 (4)N2—Cd1—O2—C984.7 (2)
C9—C8—N1—C289.6 (4)Cl1—Cd1—O2—C922.3 (2)
C1—C2—N1—C382.0 (4)Cl2—Cd1—O2—C9123.1 (2)
C1—C2—N1—C8103.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H7···O1i0.851.842.670 (4)165
O1—H6···Cl1ii0.852.343.157 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[CdCl2(C16H17N3O2)]
Mr466.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.9435 (15), 22.548 (4), 9.5216 (18)
β (°) 98.808 (3)
V3)1685.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.24 × 0.11 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.696, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
9776, 3641, 2933
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 1.03
No. of reflections3641
No. of parameters217
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.40

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Selected geometric parameters (Å, º) top
Cd1—N32.235 (3)Cd1—Cl12.4752 (11)
Cd1—O22.279 (2)Cd1—Cl22.4800 (10)
Cd1—N22.470 (3)
N3—Cd1—O2136.77 (9)N2—Cd1—Cl1110.02 (7)
N3—Cd1—N272.40 (9)N3—Cd1—Cl298.90 (8)
O2—Cd1—N278.60 (9)O2—Cd1—Cl290.69 (7)
N3—Cd1—Cl1106.83 (7)N2—Cd1—Cl2150.32 (7)
O2—Cd1—Cl1112.94 (7)Cl1—Cd1—Cl299.66 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H7···O1i0.851.842.670 (4)164.9
O1—H6···Cl1ii0.852.343.157 (3)162.0
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the Project of Scientific Studies Development of Shandong Provincial Education Department (No. J08LC51) and the Natural Science Foundation of Shandong Province of China (grant No. Y2007B26).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, X. & Li, J. M. (2009). Acta Cryst. E65, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds