metal-organic compounds
Bis[5-(2-amino-3-pyridyl)tetrazolato]copper(II)
aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: guomin625@yahoo.com.cn
In the centrosymmetric title complex, [Cu(C6H5N6)2], the CuII ion is coordinated by four N atoms from two symmetry-related bidentate 5-(2-amino-3-pyridyl)tetrazolate ligands in a slightly distorted square-planar environment. There are weak intramolecular N—H⋯N hydrogen bonds between the two ligands. In the there are significant π–π stacking interactions between symmetry-related tetrazole and pyridine rings, with a centroid–centroid distance of 3.6025 (18)°.
Related literature
For the coordination chemistry of tetrazole compounds, see: Butler (1984); Zhao et al. (2008). For the in situ [2 + 3] cycloaddition synthesis of tetrazole coordination polymers, see: Xiong et al. (2002); Ye et al. (2006); Fu et al. (2008). For coordination polymers synthesized with similar organic ligand derivatives, see: Ye et al. (2005); Bhandari et al. (2000).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809034369/lh2827sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034369/lh2827Isup2.hkl
The title compound was prepared by hydrothermal treatment of 2-aminonicotinonitrile (2.3 mmol) and Cu(NO3)2 (1.0 mmol) with excess amount of NaN3 in a sealed Pyrex tuble at 403K for 2–4 days. The resulting green rectangular crystals gave a yield of 75% based on Cu(NO3)2.
H atoms were placed in caculated positions with C-H = 0.93 and N-H = 0.90Å and refined using a riding-model approximation with Uiso(H) = 1.2Ueq(C,N).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C6H5N6)2] | F(000) = 390 |
Mr = 385.86 | Dx = 1.829 Mg m−3 |
Monoclinic, P21/c | Melting point: 723 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6492 (6) Å | Cell parameters from 2942 reflections |
b = 7.9093 (7) Å | θ = 3.0–27.5° |
c = 13.5581 (12) Å | µ = 1.59 mm−1 |
β = 100.692 (2)° | T = 294 K |
V = 700.65 (11) Å3 | Rectangle, green |
Z = 2 | 0.15 × 0.13 × 0.09 mm |
Rigaku Mercury2 diffractometer | 1363 independent reflections |
Radiation source: fine-focus sealed tube | 1228 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −8→9 |
Tmin = 0.797, Tmax = 0.870 | l = −15→16 |
3743 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0555P)2 + 1.0273P] where P = (Fo2 + 2Fc2)/3 |
1363 reflections | (Δ/σ)max < 0.001 |
115 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.73 e Å−3 |
[Cu(C6H5N6)2] | V = 700.65 (11) Å3 |
Mr = 385.86 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.6492 (6) Å | µ = 1.59 mm−1 |
b = 7.9093 (7) Å | T = 294 K |
c = 13.5581 (12) Å | 0.15 × 0.13 × 0.09 mm |
β = 100.692 (2)° |
Rigaku Mercury2 diffractometer | 1363 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1228 reflections with I > 2σ(I) |
Tmin = 0.797, Tmax = 0.870 | Rint = 0.020 |
3743 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.69 e Å−3 |
1363 reflections | Δρmin = −0.73 e Å−3 |
115 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0265 (2) | |
N6 | 1.0060 (4) | 0.1967 (3) | 0.61317 (18) | 0.0302 (6) | |
C6 | 0.7920 (5) | 0.3986 (4) | 0.3685 (2) | 0.0260 (6) | |
C5 | 0.9283 (4) | 0.3088 (4) | 0.4476 (2) | 0.0263 (6) | |
N4 | 0.6177 (4) | 0.4748 (3) | 0.37835 (19) | 0.0294 (6) | |
C4 | 0.8741 (5) | 0.2899 (4) | 0.5446 (2) | 0.0258 (6) | |
N3 | 0.8245 (4) | 0.4167 (4) | 0.27476 (19) | 0.0345 (6) | |
C3 | 1.1079 (5) | 0.2369 (4) | 0.4307 (2) | 0.0322 (7) | |
H3A | 1.1439 | 0.2497 | 0.3680 | 0.039* | |
N2 | 0.5399 (4) | 0.5422 (4) | 0.2875 (2) | 0.0365 (6) | |
C2 | 1.2364 (5) | 0.1461 (4) | 0.5041 (3) | 0.0364 (7) | |
H2A | 1.3576 | 0.0997 | 0.4914 | 0.044* | |
C1 | 1.1816 (5) | 0.1263 (4) | 0.5947 (2) | 0.0349 (7) | |
H1A | 1.2646 | 0.0642 | 0.6446 | 0.042* | |
N1 | 0.6643 (5) | 0.5072 (4) | 0.2266 (2) | 0.0385 (7) | |
N5 | 0.7116 (4) | 0.3534 (3) | 0.56979 (17) | 0.0291 (6) | |
H5A | 0.7585 | 0.4076 | 0.6279 | 0.035* | |
H5B | 0.6431 | 0.2629 | 0.5866 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0241 (3) | 0.0352 (3) | 0.0227 (3) | 0.00433 (19) | 0.0104 (2) | 0.00138 (19) |
N6 | 0.0281 (14) | 0.0330 (14) | 0.0300 (13) | 0.0006 (10) | 0.0068 (11) | 0.0029 (10) |
C6 | 0.0267 (15) | 0.0296 (14) | 0.0243 (13) | −0.0035 (11) | 0.0112 (11) | −0.0035 (11) |
C5 | 0.0250 (15) | 0.0270 (14) | 0.0292 (15) | −0.0012 (11) | 0.0108 (12) | −0.0019 (11) |
N4 | 0.0280 (14) | 0.0395 (14) | 0.0223 (12) | 0.0041 (11) | 0.0087 (10) | 0.0012 (10) |
C4 | 0.0239 (15) | 0.0258 (14) | 0.0286 (14) | −0.0029 (11) | 0.0076 (12) | 0.0000 (11) |
N3 | 0.0342 (15) | 0.0477 (16) | 0.0248 (12) | 0.0030 (12) | 0.0137 (11) | −0.0019 (11) |
C3 | 0.0325 (17) | 0.0347 (16) | 0.0328 (16) | 0.0011 (13) | 0.0151 (13) | −0.0031 (13) |
N2 | 0.0353 (16) | 0.0513 (16) | 0.0245 (13) | 0.0073 (13) | 0.0100 (11) | 0.0046 (12) |
C2 | 0.0280 (16) | 0.0374 (17) | 0.0464 (18) | 0.0065 (13) | 0.0141 (14) | −0.0028 (14) |
C1 | 0.0297 (17) | 0.0334 (16) | 0.0393 (17) | 0.0024 (12) | 0.0002 (13) | 0.0015 (13) |
N1 | 0.0365 (17) | 0.0561 (19) | 0.0242 (13) | 0.0054 (12) | 0.0092 (12) | 0.0040 (11) |
N5 | 0.0277 (14) | 0.0401 (15) | 0.0229 (11) | 0.0069 (11) | 0.0135 (10) | 0.0056 (10) |
Cu1—N5i | 1.930 (2) | N4—N2 | 1.354 (4) |
Cu1—N5 | 1.930 (2) | C4—N5 | 1.293 (4) |
Cu1—N4 | 1.963 (2) | N3—N1 | 1.348 (4) |
Cu1—N4i | 1.963 (2) | C3—C2 | 1.386 (5) |
N6—C1 | 1.358 (4) | C3—H3A | 0.9300 |
N6—C4 | 1.369 (4) | N2—N1 | 1.302 (4) |
C6—N4 | 1.335 (4) | C2—C1 | 1.354 (5) |
C6—N3 | 1.336 (4) | C2—H2A | 0.9300 |
C6—C5 | 1.455 (4) | C1—H1A | 0.9300 |
C5—C3 | 1.380 (4) | N5—H5A | 0.9000 |
C5—C4 | 1.435 (4) | N5—H5B | 0.9000 |
N5i—Cu1—N5 | 180 | C6—N3—N1 | 105.3 (2) |
N5i—Cu1—N4 | 90.97 (10) | C5—C3—C2 | 122.1 (3) |
N5—Cu1—N4 | 89.03 (10) | C5—C3—H3A | 118.9 |
N5i—Cu1—N4i | 89.03 (10) | C2—C3—H3A | 118.9 |
N5—Cu1—N4i | 90.97 (10) | N1—N2—N4 | 108.2 (3) |
N4—Cu1—N4i | 180 | C1—C2—C3 | 118.5 (3) |
C1—N6—C4 | 124.1 (3) | C1—C2—H2A | 120.7 |
N4—C6—N3 | 110.1 (3) | C3—C2—H2A | 120.7 |
N4—C6—C5 | 125.5 (3) | C2—C1—N6 | 120.3 (3) |
N3—C6—C5 | 124.4 (3) | C2—C1—H1A | 119.8 |
C3—C5—C4 | 118.8 (3) | N6—C1—H1A | 119.8 |
C3—C5—C6 | 121.3 (3) | N2—N1—N3 | 110.1 (3) |
C4—C5—C6 | 119.9 (3) | C4—N5—Cu1 | 132.2 (2) |
C6—N4—N2 | 106.2 (2) | C4—N5—H5A | 104.2 |
C6—N4—Cu1 | 128.3 (2) | Cu1—N5—H5A | 104.2 |
N2—N4—Cu1 | 125.5 (2) | C4—N5—H5B | 104.2 |
N5—C4—N6 | 119.4 (3) | Cu1—N5—H5B | 104.2 |
N5—C4—C5 | 124.5 (3) | H5A—N5—H5B | 105.5 |
N6—C4—C5 | 116.1 (3) | ||
N4—C6—C5—C3 | −178.6 (3) | C6—C5—C4—N6 | 176.9 (3) |
N3—C6—C5—C3 | 1.2 (5) | N4—C6—N3—N1 | 0.1 (3) |
N4—C6—C5—C4 | 3.1 (4) | C5—C6—N3—N1 | −179.8 (3) |
N3—C6—C5—C4 | −177.1 (3) | C4—C5—C3—C2 | 0.5 (5) |
N3—C6—N4—N2 | 0.1 (4) | C6—C5—C3—C2 | −177.8 (3) |
C5—C6—N4—N2 | 179.9 (3) | C6—N4—N2—N1 | −0.2 (4) |
N3—C6—N4—Cu1 | −176.5 (2) | Cu1—N4—N2—N1 | 176.5 (2) |
C5—C6—N4—Cu1 | 3.4 (4) | C5—C3—C2—C1 | 0.8 (5) |
N5—Cu1—N4—C6 | −7.2 (3) | C3—C2—C1—N6 | −1.1 (5) |
N5—Cu1—N4—N2 | 176.9 (3) | C4—N6—C1—C2 | 0.1 (5) |
C1—N6—C4—N5 | −179.3 (3) | N4—N2—N1—N3 | 0.2 (4) |
C1—N6—C4—C5 | 1.2 (4) | C6—N3—N1—N2 | −0.2 (4) |
C3—C5—C4—N5 | 179.0 (3) | N6—C4—N5—Cu1 | 175.8 (2) |
C6—C5—C4—N5 | −2.6 (4) | C5—C4—N5—Cu1 | −4.7 (5) |
C3—C5—C4—N6 | −1.4 (4) | N4—Cu1—N5—C4 | 8.1 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···N2i | 0.90 | 2.50 | 2.902 (4) | 108 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H5N6)2] |
Mr | 385.86 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 6.6492 (6), 7.9093 (7), 13.5581 (12) |
β (°) | 100.692 (2) |
V (Å3) | 700.65 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.59 |
Crystal size (mm) | 0.15 × 0.13 × 0.09 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.797, 0.870 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3743, 1363, 1228 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.109, 1.07 |
No. of reflections | 1363 |
No. of parameters | 115 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.73 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
N5i—Cu1—N5 | 180 | N5—Cu1—N4i | 90.97 (10) |
N5—Cu1—N4 | 89.03 (10) | N4—Cu1—N4i | 180 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···N2i | 0.90 | 2.50 | 2.902 (4) | 107.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by a start-up grant from SEU.
References
Bhandari, S., Hague, C. E., Mahon, M. F. & Molloy, K. C. (2000). J. Chem. Soc. Dalton Trans. pp. 663–669. Web of Science CSD CrossRef Google Scholar
Butler, R. N. (1984). In Comprehensive Heterocyclic Chemistry, Vol. 5, edited by A. R. Katritzky, pp. 791–838. Amsterdam: Elsevier. Google Scholar
Fu, D. W., Zhang, W. & Xiong, R. G. (2008). Cryst. Growth Des. 8, 3461–3464. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803. CrossRef CAS Google Scholar
Ye, Q., Li, Y. H., Song, Y. M., Huang, X. F., Xiong, R. G. & Xue, Z. L. (2005). Inorg. Chem. 44, 3618–3625. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ye, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chang, P. W. H., Zhu, J. S., Huang, S. P. D. & Xiong, R. G. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In situ [2+3] cycloaddition synthesis of tetrazole coordination polymers under hydrothermal conditions has proved to be a fast and convenient route to explore novel coordination polymers with rich structural diversities and potential physical properties, such as second harmonic generation (SGH), ferroelectric and dielectric responses (Xiong et al., 2002; Ye et al., 2006; Fu et al. (2008). The crystal structure of the compound formed by our hydrothermal synthesis is reported herein.
The molecular structure of the title compound is shown in Fig. 1. The CuII ion lies on an inversion center coordinated by four N atoms from two symmetry related bidentate 3-(2-Amino-pyridyl))tetrazolato ligands in a slightly distorted square-planar environment. In the crystal structure, there are significant π–π stacking interactions between symmetry related tetrazole and pyridine rings with a centroid to centroid distance of 3.6025 (18)°.