organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3,5-Di­methyl-1H-pyrazol-1-yl)propanamide

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zjf@nbu.edu.cn

(Received 12 June 2009; accepted 21 August 2009; online 12 September 2009)

In the crystal of the title compound, C8H13N3O, mol­ecules are linked by inter­molecular N—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network. Additional stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the potential applications of hemilabile ligands containing substituted pyrazole groups, see: Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S. M., Lee, G. H., Butcher, R. J., Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Shaw et al. (2004[Shaw, J. L., Garrison, S. A., Aleman, E. A., Ziegler, C. J. & Modarelli, D. A. (2004). J. Org. Chem. 69, 7423-7427.]). For the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirement of a particular metal-binding site, see: Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]); Paul et al. (2004[Paul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). Dalton Trans. pp. 3453-3458.]);

[Scheme 1]

Experimental

Crystal data
  • C8H13N3O

  • Mr = 167.21

  • Orthorhombic, F d d 2

  • a = 14.452 (5) Å

  • b = 33.390 (7) Å

  • c = 7.4354 (15) Å

  • V = 3588.0 (16) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.47 × 0.37 × 0.36 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.970

  • 4623 measured reflections

  • 1067 independent reflections

  • 890 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.14

  • 1067 reflections

  • 112 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.10 2.936 (3) 164
N1—H1B⋯N3ii 0.86 2.30 3.084 (3) 152
C3—H3B⋯O1iii 0.97 2.52 3.413 (3) 154
Symmetry codes: (i) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) -x, -y, z; (iii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, there has been considerable interest in the use of hemilabile ligands containing substituted pyrazole groups because of their potential applications in catalysis and their ability for complex construction (Shaw et al., 2004; Pal et al., 2005). Nowadays, much attention has been focused on the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirement of a particular metal-binding site (Mukherjee, 2000; Paul et al., 2004). Herein, we report the crystal structure of the title compound. The molecluar structure of the title compound is shown in Fig. 1. In the crystal structure, molecules are linked by intermolecular N—H···N and N—H···O hydrogen bonds into a three dimensional network (see Fig. 2 and Table 1). Additional stabilization is provided by weak intermolecular C-H···O hydrogen bonds.

Related literature top

For the potential applications of hemilabile ligands containing substituted pyrazole groups, see: Pal et al. (2005); Shaw et al. (2004). For the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirement of a particular metal-binding site, see: Mukherjee (2000); Paul et al. (2004);

Experimental top

A mixture of 3,5-dimethylpyrazole (3.845 g, 40 mmol), sodium hydroxide (0.2 g, 5 mmol) and N,N'-dimethylformamide(DMF)(100 ml) was stirred and heated to 373 K. A solution of acrylamide (2.843 g, 40 mmol) in DMF (20 ml) was added dropwise. After 6 h, heating was then terminated. The cooled reaction mixture was filtered and DMF was removed by vacuum distillation to give 3.66 g analytically pure N-pyrazolylpropanimide (yield: 54.7%). Recrystallization from ethanol solution yielded colorless single-crystals suitable for X-ray diffraction analysis. Calculated for C8H13N3O: C 57.42, H 7.78, N 25.12%; found: C 57.26, H 7.59, N 25.18%.

Refinement top

H atoms were positioned geometrically and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic), 0.97 Å (methylene), 0.96 (methyl) and N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(Cmethyl). In the absense of significant anomalous dispersion effects Friedel pairs were merged.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Dashed lines indicate hydrogen bonds.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)propanamide top
Crystal data top
C8H13N3OF(000) = 1440
Mr = 167.21Dx = 1.238 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 4623 reflections
a = 14.452 (5) Åθ = 3.1–27.5°
b = 33.390 (7) ŵ = 0.09 mm1
c = 7.4354 (15) ÅT = 298 K
V = 3588.0 (16) Å3Block, colorless
Z = 160.47 × 0.37 × 0.36 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1067 independent reflections
Radiation source: fine-focus sealed tube890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1718
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 4343
Tmin = 0.963, Tmax = 0.970l = 98
4623 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0446P)2 + 1.8694P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1067 reflectionsΔρmax = 0.14 e Å3
112 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXTL'(Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0108 (8)
Crystal data top
C8H13N3OV = 3588.0 (16) Å3
Mr = 167.21Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 14.452 (5) ŵ = 0.09 mm1
b = 33.390 (7) ÅT = 298 K
c = 7.4354 (15) Å0.47 × 0.37 × 0.36 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1067 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
890 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.970Rint = 0.044
4623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.14Δρmax = 0.14 e Å3
1067 reflectionsΔρmin = 0.19 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02008 (12)0.12376 (4)0.3335 (3)0.0530 (5)
N10.08464 (14)0.07777 (6)0.2532 (4)0.0530 (6)
H1A0.11850.09520.19910.064*
H1B0.10130.05300.25560.064*
N20.15555 (13)0.04420 (5)0.1786 (2)0.0364 (5)
N30.12698 (13)0.00771 (5)0.1195 (3)0.0413 (5)
C10.00707 (15)0.08880 (6)0.3326 (3)0.0380 (5)
C20.04624 (16)0.05620 (6)0.4265 (3)0.0435 (6)
H2A0.01630.03070.40320.052*
H2B0.04410.06090.55510.052*
C30.14666 (15)0.05349 (7)0.3680 (3)0.0391 (5)
H3B0.17710.07880.39240.047*
H3A0.17750.03290.43790.047*
C40.2226 (2)0.10885 (7)0.0702 (5)0.0622 (8)
H4B0.27460.10820.15040.093*
H4C0.17470.12530.12100.093*
H4A0.24140.11980.04340.093*
C50.18687 (15)0.06742 (6)0.0435 (3)0.0422 (5)
C60.17798 (19)0.04516 (8)0.1109 (4)0.0505 (6)
H6A0.19380.05290.22700.061*
C70.14038 (16)0.00856 (7)0.0582 (3)0.0438 (6)
C80.1147 (2)0.02660 (9)0.1705 (5)0.0628 (8)
H8A0.14650.04990.12740.094*
H8B0.13190.02170.29320.094*
H8C0.04910.03090.16340.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0548 (10)0.0323 (7)0.0719 (13)0.0018 (6)0.0196 (10)0.0002 (8)
N10.0488 (10)0.0381 (9)0.0720 (16)0.0038 (8)0.0163 (12)0.0039 (11)
N20.0386 (10)0.0338 (10)0.0369 (10)0.0008 (7)0.0009 (9)0.0020 (8)
N30.0410 (10)0.0342 (9)0.0486 (12)0.0007 (7)0.0011 (10)0.0057 (8)
C10.0391 (11)0.0335 (9)0.0415 (12)0.0025 (8)0.0025 (10)0.0037 (9)
C20.0473 (13)0.0385 (11)0.0447 (13)0.0024 (9)0.0045 (11)0.0049 (10)
C30.0419 (12)0.0367 (10)0.0387 (12)0.0061 (9)0.0027 (11)0.0005 (9)
C40.0787 (19)0.0442 (13)0.0636 (18)0.0134 (12)0.0057 (17)0.0057 (13)
C50.0425 (11)0.0419 (10)0.0422 (13)0.0005 (9)0.0004 (12)0.0018 (10)
C60.0521 (14)0.0604 (16)0.0390 (12)0.0001 (11)0.0008 (12)0.0009 (11)
C70.0365 (11)0.0509 (14)0.0441 (13)0.0051 (9)0.0047 (11)0.0113 (11)
C80.0568 (15)0.0671 (16)0.0645 (19)0.0018 (12)0.0065 (15)0.0243 (15)
Geometric parameters (Å, º) top
O1—C11.232 (2)C3—H3A0.9700
N1—C11.320 (3)C4—C51.490 (3)
N1—H1A0.8598C4—H4B0.9600
N1—H1B0.8603C4—H4C0.9600
N2—C51.347 (3)C4—H4A0.9600
N2—N31.359 (3)C5—C61.373 (4)
N2—C31.448 (3)C6—C71.394 (4)
N3—C71.335 (3)C6—H6A0.9300
C1—C21.505 (3)C7—C81.488 (4)
C2—C31.518 (3)C8—H8A0.9600
C2—H2A0.9700C8—H8B0.9600
C2—H2B0.9700C8—H8C0.9600
C3—H3B0.9700
C1—N1—H1A120.2C5—C4—H4B109.5
C1—N1—H1B119.8C5—C4—H4C109.5
H1A—N1—H1B120.0H4B—C4—H4C109.5
C5—N2—N3112.13 (18)C5—C4—H4A109.5
C5—N2—C3129.18 (18)H4B—C4—H4A109.5
N3—N2—C3118.66 (18)H4C—C4—H4A109.5
C7—N3—N2104.88 (19)N2—C5—C6106.28 (19)
O1—C1—N1122.5 (2)N2—C5—C4123.4 (2)
O1—C1—C2121.3 (2)C6—C5—C4130.3 (2)
N1—C1—C2116.14 (18)C5—C6—C7106.0 (2)
C1—C2—C3113.56 (19)C5—C6—H6A127.0
C1—C2—H2A108.9C7—C6—H6A127.0
C3—C2—H2A108.9N3—C7—C6110.7 (2)
C1—C2—H2B108.9N3—C7—C8120.2 (2)
C3—C2—H2B108.9C6—C7—C8129.1 (3)
H2A—C2—H2B107.7C7—C8—H8A109.5
N2—C3—C2112.11 (19)C7—C8—H8B109.5
N2—C3—H3B109.2H8A—C8—H8B109.5
C2—C3—H3B109.2C7—C8—H8C109.5
N2—C3—H3A109.2H8A—C8—H8C109.5
C2—C3—H3A109.2H8B—C8—H8C109.5
H3B—C3—H3A107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.936 (3)164
N1—H1B···N3ii0.862.303.084 (3)152
C3—H3B···O1iii0.972.523.413 (3)154
Symmetry codes: (i) x1/4, y+1/4, z1/4; (ii) x, y, z; (iii) x+1/4, y+1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC8H13N3O
Mr167.21
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)298
a, b, c (Å)14.452 (5), 33.390 (7), 7.4354 (15)
V3)3588.0 (16)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.37 × 0.36
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.963, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
4623, 1067, 890
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.14
No. of reflections1067
No. of parameters112
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.936 (3)164
N1—H1B···N3ii0.862.303.084 (3)152
C3—H3B···O1iii0.972.523.413 (3)154
Symmetry codes: (i) x1/4, y+1/4, z1/4; (ii) x, y, z; (iii) x+1/4, y+1/4, z+1/4.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Project of Zhejiang Province Science and Technology Program (grant No. 2008 C21043), the Program of Ningbo Natural Science Foundation (grant No. 2007 A610053) and the Project of Zhejiang Province New Talent Program (grant No. 2008R40G2070020). We thank Ms Y. Zhou for the help with the structure analysis and Mr W. Xu for the diffraction data collection.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S. M., Lee, G. H., Butcher, R. J., Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPaul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). Dalton Trans. pp. 3453–3458.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationShaw, J. L., Garrison, S. A., Aleman, E. A., Ziegler, C. J. & Modarelli, D. A. (2004). J. Org. Chem. 69, 7423–7427.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds