organic compounds
4-Bromomethyl-7-methyl-6,8-dinitrocoumarin
aDepartment of Physics, Goverment College for Women, Kolar 563 101, Karnataka, India, bDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India, and cDepartment of Physics, Goverment First Grade College, K.R. Pura, Bangalore 560 036, Karnataka, India
*Correspondence e-mail: arjunagowda@indiainfo.com
The 11H7BrN2O6, establishes the substitution positions of the nitro groups from the nitration reaction of 7-methyl-4-bromomethyl coumarin. The mean planes of the nitro groups form dihedral angles of 43.9 (8) and 52.7 (10)° with the essentially planar [maximum deviation 0.031 (6) Å] benzopyran ring system.
of the title compound, CRelated literature
For background information on the nitration of coumarin compounds, see: Kulkarni et al. (1983); Clayton et al. (1910). For a related structure, see: Vasudevan et al. (1990). For ab initio calculations on 6-methyl-4-bromomethylcoumarins, see: Sortur et al. (2006).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680903596X/lh2864sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903596X/lh2864Isup2.hkl
5.06 g of 7-methyl-4-bromomethyl coumarin (0.02 mol) was dissolved in conc. sulfuric acid (10 ml) and treated with a nitrating mixture 15 ml (10 ml H2SO4 + 5 ml HNO3) at ice bath temperatures (273-278K). The reaction mixture was then allowed to stand at room temperature for two hours and the reaction mixture was poured over crushed ice. The separated solid was washed with excess of water, dried and recrystallized from glacial acetic acid. Crystals suitable for diffraction studies were grown by slow evaporation of an ethanol solution of the title compound.
Hydrogen atoms were positioned geometrically with C—H = 0.93-0.97 A° and included in the refinment in a riding-model approximation with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl C atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. |
C11H7BrN2O6 | F(000) = 1360 |
Mr = 343.09 | Dx = 1.825 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 8.122 (2) Å | θ = 10–15° |
b = 11.091 (4) Å | µ = 3.32 mm−1 |
c = 27.723 (6) Å | T = 294 K |
V = 2497.3 (12) Å3 | Plate, colourless |
Z = 8 | 0.2 × 0.2 × 0.1 mm |
Enraf–Nonius CAD-4 diffractometer | 1148 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 25.0°, θmin = 2.9° |
ω–2θ scans | h = 0→9 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→13 |
Tmin = 0.520, Tmax = 0.72 | l = 0→32 |
2196 measured reflections | 2 standard reflections every 60 min |
2196 independent reflections | intensity decay: none |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.060 | w = 1/[σ2(Fo2) + (0.0687P)2 + 11.8667P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.171 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.63 e Å−3 |
2196 reflections | Δρmin = −0.82 e Å−3 |
182 parameters |
C11H7BrN2O6 | V = 2497.3 (12) Å3 |
Mr = 343.09 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.122 (2) Å | µ = 3.32 mm−1 |
b = 11.091 (4) Å | T = 294 K |
c = 27.723 (6) Å | 0.2 × 0.2 × 0.1 mm |
Enraf–Nonius CAD-4 diffractometer | 1148 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.520, Tmax = 0.72 | 2 standard reflections every 60 min |
2196 measured reflections | intensity decay: none |
2196 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0687P)2 + 11.8667P] where P = (Fo2 + 2Fc2)/3 |
2196 reflections | Δρmax = 0.63 e Å−3 |
182 parameters | Δρmin = −0.82 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7703 (11) | 0.2886 (7) | 0.6819 (3) | 0.047 (2) | |
C2 | 0.9438 (10) | 0.2873 (7) | 0.6922 (3) | 0.045 (2) | |
H3 | 0.9856 | 0.3447 | 0.7134 | 0.054* | |
C3 | 1.0484 (9) | 0.2073 (6) | 0.6727 (3) | 0.0380 (18) | |
C4 | 1.0779 (9) | 0.0341 (6) | 0.6146 (3) | 0.0364 (18) | |
H5 | 1.1898 | 0.0281 | 0.6213 | 0.044* | |
C5 | 1.0085 (9) | −0.0431 (6) | 0.5812 (2) | 0.0348 (17) | |
C6 | 0.8400 (9) | −0.0445 (6) | 0.5709 (3) | 0.0395 (19) | |
C7 | 0.7498 (9) | 0.0406 (6) | 0.5954 (2) | 0.0358 (16) | |
C8 | 0.9860 (8) | 0.1194 (6) | 0.6381 (3) | 0.0326 (17) | |
C9 | 0.8194 (9) | 0.1222 (6) | 0.6280 (3) | 0.0339 (17) | |
C10 | 1.2259 (10) | 0.2058 (7) | 0.6867 (3) | 0.049 (2) | |
H11A | 1.2542 | 0.2804 | 0.7030 | 0.059* | |
H11B | 1.2942 | 0.1987 | 0.6581 | 0.059* | |
C11 | 0.7574 (12) | −0.1318 (7) | 0.5373 (3) | 0.057 (2) | |
H12A | 0.8385 | −0.1842 | 0.5234 | 0.085* | |
H12B | 0.7020 | −0.0882 | 0.5122 | 0.085* | |
H12C | 0.6787 | −0.1790 | 0.5550 | 0.085* | |
N1 | 1.1229 (9) | −0.1278 (6) | 0.5564 (3) | 0.0483 (17) | |
N2 | 0.5699 (8) | 0.0459 (6) | 0.5897 (3) | 0.0477 (17) | |
O1 | 0.7146 (6) | 0.2044 (4) | 0.64815 (18) | 0.0406 (13) | |
O2 | 0.6689 (8) | 0.3553 (6) | 0.6980 (2) | 0.0649 (18) | |
O3 | 1.2252 (9) | −0.1757 (6) | 0.5791 (3) | 0.085 (2) | |
O4 | 1.1032 (9) | −0.1384 (6) | 0.5134 (3) | 0.079 (2) | |
O5 | 0.5137 (9) | 0.0940 (7) | 0.5564 (3) | 0.099 (3) | |
O6 | 0.4882 (8) | 0.0020 (9) | 0.6212 (3) | 0.113 (3) | |
Br | 1.26518 (11) | 0.06847 (7) | 0.72976 (3) | 0.0597 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.061 (6) | 0.043 (4) | 0.037 (4) | 0.004 (5) | −0.002 (5) | −0.002 (4) |
C2 | 0.060 (6) | 0.036 (4) | 0.040 (4) | −0.001 (4) | −0.002 (4) | −0.006 (4) |
C3 | 0.040 (4) | 0.039 (4) | 0.034 (4) | −0.008 (4) | −0.002 (3) | 0.004 (3) |
C4 | 0.034 (4) | 0.038 (4) | 0.038 (4) | 0.000 (3) | −0.004 (3) | −0.001 (3) |
C5 | 0.039 (4) | 0.036 (4) | 0.029 (4) | 0.007 (3) | 0.003 (3) | −0.002 (3) |
C6 | 0.045 (5) | 0.040 (4) | 0.034 (4) | −0.003 (4) | −0.009 (4) | 0.001 (3) |
C7 | 0.030 (4) | 0.039 (4) | 0.039 (4) | −0.002 (4) | −0.002 (4) | 0.006 (3) |
C8 | 0.028 (4) | 0.034 (4) | 0.036 (4) | −0.004 (3) | 0.000 (3) | −0.003 (3) |
C9 | 0.033 (4) | 0.037 (4) | 0.032 (4) | 0.007 (3) | 0.004 (3) | 0.005 (3) |
C10 | 0.056 (6) | 0.048 (4) | 0.044 (4) | −0.013 (4) | −0.004 (4) | −0.001 (4) |
C11 | 0.072 (6) | 0.040 (4) | 0.058 (5) | −0.001 (5) | −0.024 (5) | −0.011 (4) |
N1 | 0.049 (5) | 0.049 (4) | 0.045 (5) | 0.001 (4) | 0.001 (4) | −0.001 (4) |
N2 | 0.037 (4) | 0.046 (4) | 0.058 (5) | 0.001 (3) | −0.012 (4) | 0.001 (4) |
O1 | 0.031 (3) | 0.049 (3) | 0.042 (3) | 0.010 (2) | −0.003 (2) | −0.002 (3) |
O2 | 0.071 (4) | 0.063 (4) | 0.061 (4) | 0.026 (4) | 0.003 (3) | −0.013 (3) |
O3 | 0.074 (5) | 0.092 (5) | 0.088 (5) | 0.039 (4) | −0.010 (4) | −0.023 (4) |
O4 | 0.102 (6) | 0.076 (4) | 0.059 (5) | 0.023 (4) | 0.012 (4) | −0.014 (4) |
O5 | 0.060 (5) | 0.130 (7) | 0.108 (6) | 0.004 (4) | −0.033 (5) | 0.048 (5) |
O6 | 0.038 (4) | 0.160 (8) | 0.141 (8) | −0.011 (5) | −0.002 (5) | 0.073 (7) |
Br | 0.0621 (6) | 0.0560 (5) | 0.0611 (6) | 0.0056 (5) | −0.0181 (5) | −0.0042 (4) |
C1—O2 | 1.194 (9) | C7—C9 | 1.397 (10) |
C1—O1 | 1.398 (9) | C7—N2 | 1.471 (10) |
C1—C2 | 1.438 (11) | C8—C9 | 1.382 (9) |
C2—C3 | 1.342 (10) | C9—O1 | 1.368 (8) |
C2—H3 | 0.9300 | C10—H11A | 0.9700 |
C3—C8 | 1.458 (10) | C10—H11B | 0.9700 |
C3—C10 | 1.494 (11) | C11—H12A | 0.9600 |
C4—C8 | 1.370 (10) | C11—H12B | 0.9600 |
C4—C5 | 1.383 (9) | C11—H12C | 0.9600 |
C4—H5 | 0.9300 | N1—O3 | 1.169 (9) |
C5—C6 | 1.398 (10) | N1—O4 | 1.210 (9) |
C5—N1 | 1.488 (10) | N2—O5 | 1.160 (8) |
C6—C7 | 1.375 (10) | N2—O6 | 1.201 (9) |
C6—C11 | 1.501 (10) | ||
O2—C1—O1 | 116.2 (8) | C9—C8—C3 | 117.3 (7) |
O2—C1—C2 | 127.4 (8) | O1—C9—C8 | 122.8 (7) |
O1—C1—C2 | 116.3 (7) | O1—C9—C7 | 116.4 (6) |
C3—C2—C1 | 123.1 (7) | C8—C9—C7 | 120.9 (7) |
C3—C2—H3 | 118.4 | C3—C10—Br | 108.9 (5) |
C1—C2—H3 | 118.4 | C3—C10—H11A | 109.9 |
C2—C3—C8 | 119.2 (7) | Br—C10—H11A | 109.9 |
C2—C3—C10 | 120.9 (7) | C3—C10—H11B | 109.9 |
C8—C3—C10 | 120.0 (7) | Br—C10—H11B | 109.9 |
C8—C4—C5 | 121.6 (7) | H11A—C10—H11B | 108.3 |
C8—C4—H5 | 119.2 | C6—C11—H12A | 109.5 |
C5—C4—H5 | 119.2 | C6—C11—H12B | 109.5 |
C4—C5—C6 | 122.9 (7) | H12A—C11—H12B | 109.5 |
C4—C5—N1 | 116.5 (7) | C6—C11—H12C | 109.5 |
C6—C5—N1 | 120.7 (7) | H12A—C11—H12C | 109.5 |
C7—C6—C5 | 114.4 (7) | H12B—C11—H12C | 109.5 |
C7—C6—C11 | 120.8 (7) | O3—N1—O4 | 125.5 (8) |
C5—C6—C11 | 124.8 (7) | O3—N1—C5 | 118.9 (7) |
C6—C7—C9 | 123.3 (7) | O4—N1—C5 | 115.6 (7) |
C6—C7—N2 | 120.2 (7) | O5—N2—O6 | 123.2 (8) |
C9—C7—N2 | 116.5 (6) | O5—N2—C7 | 119.7 (8) |
C4—C8—C9 | 116.9 (7) | O6—N2—C7 | 117.0 (7) |
C4—C8—C3 | 125.8 (7) | C9—O1—C1 | 121.2 (6) |
O2—C1—C2—C3 | 179.1 (8) | C3—C8—C9—O1 | 1.3 (10) |
O1—C1—C2—C3 | −2.9 (11) | C4—C8—C9—C7 | 0.4 (11) |
C1—C2—C3—C8 | 2.1 (11) | C3—C8—C9—C7 | −179.7 (6) |
C1—C2—C3—C10 | −176.6 (7) | C6—C7—C9—O1 | 177.6 (6) |
C8—C4—C5—C6 | −3.6 (11) | N2—C7—C9—O1 | −4.9 (9) |
C8—C4—C5—N1 | 177.2 (7) | C6—C7—C9—C8 | −1.5 (11) |
C4—C5—C6—C7 | 2.5 (11) | N2—C7—C9—C8 | 176.0 (7) |
N1—C5—C6—C7 | −178.4 (6) | C2—C3—C10—Br | 104.6 (7) |
C4—C5—C6—C11 | −175.8 (7) | C8—C3—C10—Br | −74.1 (7) |
N1—C5—C6—C11 | 3.3 (11) | C4—C5—N1—O3 | 41.9 (11) |
C5—C6—C7—C9 | 0.0 (10) | C6—C5—N1—O3 | −137.3 (8) |
C11—C6—C7—C9 | 178.4 (7) | C4—C5—N1—O4 | −136.2 (8) |
C5—C6—C7—N2 | −177.3 (6) | C6—C5—N1—O4 | 44.6 (10) |
C11—C6—C7—N2 | 1.0 (11) | C6—C7—N2—O5 | −81.1 (10) |
C5—C4—C8—C9 | 2.0 (11) | C9—C7—N2—O5 | 101.4 (9) |
C5—C4—C8—C3 | −177.9 (7) | C6—C7—N2—O6 | 101.1 (10) |
C2—C3—C8—C4 | 178.7 (7) | C9—C7—N2—O6 | −76.4 (10) |
C10—C3—C8—C4 | −2.6 (11) | C8—C9—O1—C1 | −2.2 (10) |
C2—C3—C8—C9 | −1.2 (10) | C7—C9—O1—C1 | 178.7 (6) |
C10—C3—C8—C9 | 177.5 (7) | O2—C1—O1—C9 | −178.9 (7) |
C4—C8—C9—O1 | −178.6 (6) | C2—C1—O1—C9 | 2.9 (10) |
Experimental details
Crystal data | |
Chemical formula | C11H7BrN2O6 |
Mr | 343.09 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 294 |
a, b, c (Å) | 8.122 (2), 11.091 (4), 27.723 (6) |
V (Å3) | 2497.3 (12) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.32 |
Crystal size (mm) | 0.2 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.520, 0.72 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2196, 2196, 1148 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.171, 1.05 |
No. of reflections | 2196 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0687P)2 + 11.8667P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.63, −0.82 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
Acknowledgements
KVAG gratefully thanks the DST for financial support through the SERC Fast Track Young Scientists Scheme and RG thanks MVJ College of Engineering Bangalore (Reasearch Center). The authors also thanks Professor T. N. Guru Row, Chairman, SSCU IISc, Bangalore, for the X-ray data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Clayton, A. (1910). J. Chem. Soc. 97, 1397–1408. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kulkarni, M. V., Pujar, B. G. & Patil, V. D. (1983). Arch. Pharm. 316, 15–21. CrossRef CAS Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sortur, V., Yenagi, J., Tonannavar, J., Jadhav, V. B. & Kulkarni, M. V. (2006). Spectrochim. Acta A, 64, 301–307. CrossRef Google Scholar
Vasudevan, K. T., Puttaraja & Kulkarni, M. V. (1990). Acta Cryst. C46, 2129–2131. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecular structure of the title compound is shown in Fig. 1. The bromomethyl group is twisted is out of the plane of the benzopyran ring as described by the torsion angle of 104.6 (7)° for C2-C3-C10-Br. This is in agreement with the ab initio calculations on 6-methyl-4- bromomethylcoumarins (Sortur et al., 2006). Positions C-6 and C-8 (refers to positions from systematic naming scheme) become activated due to the electron donating methyl group at C-7 and hence nitration occurs at C-6 and C-8 consistent with the title compound which is also in agreement with earlier reports (Clayton, 1910; Kulkarni et al., 1983).