organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis{(+)-(S)-[1-(1-naphth­yl)eth­yl]imino­meth­yl}benzene

aFacultad de Ciencias Químicas, UANL, Licenciatura en Química Industrial, Ciudad Universitaria, Monterrey, NL, Mexico, bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, cLab. Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, PO Box 1067, 72001 Puebla, Pue., Mexico, and dInstituto de Química–UNAM, Circuito exterior, Cd. Universitaria, Coyoacán, CP 04510, México, DF, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 30 July 2009; accepted 21 August 2009; online 5 September 2009)

The title compound, C32H28N2, is a chiral bis-imine in which both imine groups display the common E configuration. The naphthyl groups present different orientations with respect to the central core, as reflected in the dihedral angles of 21.4 (2) and 78.83 (14)° between the benzene and naphthyl mean planes, thus the highest possible C2 local molecular symmetry is not attained. This C1 mol­ecular conformation allows multiple C—H⋯π inter­molecular contacts involving all aromatic rings, while no ππ inter­actions are available for the stabilization of the crystal structure. The resulting packing structure is based on mol­ecules stacked along [100].

Related literature

For solvent-free synthesis in organic chemistry, see: Jeon et al. (2005[Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416-16425.]); Noyori (2005[Noyori, R. (2005). Chem. Commun. pp. 1807-1811.]); Tanaka & Toda (2000[Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.]); Tovar et al. (2007[Tovar, A., Penña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22-24.]). For related chiral Schiff bases constructed from a bis-substituted benzene core, see: Allouchi et al. (1994[Allouchi, H., Bideau, J. P., Cotrait, M., Destrade, Ch. & Nguyen, H. T. (1994). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 239, 153-164.]); Hamaker & Oberts (2006[Hamaker, C. G. & Oberts, B. P. (2006). J. Chem. Crystallogr. 36, 735-742.]); Espinosa Leija et al. (2009[Espinosa Leija, A., Hernández, G., Cruz, S., Bernès, S. & Gutiérrez, R. (2009). Acta Cryst. E65, o1316.]). For the use of the enanti­omer of the title compound as a chiral dopant for liquid crystals, see: Watanabe & Fukuda (2008[Watanabe, J. & Fukuda, K. (2008). Jpn. Kokai Tokkyo Koho Patent JP 2008106201.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28N2

  • Mr = 440.56

  • Orthorhombic, P 21 21 21

  • a = 8.391 (3) Å

  • b = 15.102 (5) Å

  • c = 19.569 (7) Å

  • V = 2479.6 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.6 × 0.2 × 0.2 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 6140 measured reflections

  • 2491 independent reflections

  • 1445 reflections with I > 2σ(I)

  • Rint = 0.162

  • 3 standard reflections every 97 reflections intensity decay: 2.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.163

  • S = 1.10

  • 2491 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12ACg3i 0.96 2.79 3.677 (6) 154
C18—H18ACg4i 0.93 2.62 3.520 (5) 163
C20—H20ACg5i 0.93 2.98 3.681 (5) 133
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]. Cg1 is the centroid of ring C27–C32, Cg2 is the centroid of ring C23–C27/C32, Cg3 is the centroid of ring C14–C19, Cg4 is the centroid of ring C1–C5/C10 and Cg5 is the centroid of ring C5–C10.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is an increased interest in the use of environmentally benign reagents and conditions particularly to solvent-free procedures. Thus, avoiding organic solvents during the reactions in organic synthesis leads to clean, efficient and economical technology: safety is largely increased, working is considerably simplified, cost is reduced, increased amounts of reactants can be used, etc. Also, reactivities and sometimes selectivities are enhanced (Jeon et al., 2005; Noyori, 2005; Tanaka & Toda, 2000). On the other hand, bis-imines have lately attracted much attention, mostly due to their versatile coordination behavior and the interesting properties of their metal complexes. These compounds are particularly interesting since they can potentially act in a variety of coordination modes. Continuing our work on the synthesis and characterization of this kind of compounds (Tovar et al., 2007; Espinosa Leija et al., 2009), we synthesized the title compound under solvent-free conditions and report herein its crystal structure.

The molecule (Fig. 1) is constructed of a benzene ring para-substituted by two identical chiral fragments including imine functionality. The conformation stabilized in the solid-state has both imine groups displaying E configuration, previously observed in related systems (e.g. Allouchi et al., 1994). Naphthyl groups, which are potentially free to rotate about their σ bonds C1—C11 and C21—C23, show different orientations with respect to the central benzene ring. The dihedral angles between the central benzene ring C14···C19 and the naphthyl rings C1···C10 and C23···C32 are 21.4 (2) and 78.83 (14)°, respectively. The naphthyl systems make a dihedral angle of 73.69 (10)°. As a consequence, the molecule has C1 point symmetry rather than C2, and is not a good candidate for coordination to transition metals. In contrast, other related bis-imines based on a para-substituted benzene core approximate the C2 point symmetry (e.g. Hamaker & Oberts, 2006).

The crystal structure features a number of C—H···π intermolecular interactions of variable strength, involving all available aromatic rings (Fig. 2). Although no ππ contacts contribute to the stabilization of the crystal structure, the molecules are efficiently packed along the short [100] axis in the crystal. As a consequence, no voids are available for lattice solvent insertion, a situation contrasting with that observed for an isomeric system previously described (Espinosa Leija et al., 2009): for the meta-substituted molecule, a 1:1 solvate was crystallized with CH2Cl2, with solvent molecules filling large voids generated by the molecular conformation.

Interestingly, the enantiomer of the title compound has been registered (Watanabe & Fukuda, 2008; CAS registry number: 1021327–88-7) as a chiral dopant for nematic or cholesteric liquid crystals for generating large helical twisting power. This use is consistent with the high optical rotation measured for this molecule (see Experimental).

Related literature top

For solvent-free synthesis in organic chemistry, see: Jeon et al. (2005); Noyori (2005); Tanaka & Toda (2000); Tovar et al. (2007). For related chiral Schiff bases constructed from a bis-substituted benzene core, see: Allouchi et al. (1994); Hamaker & Oberts (2006); Espinosa Leija et al. (2009). For the use of the enantiomer of the title compound as a chiral dopant for liquid crystals, see: Watanabe & Fukuda (2008). Cg1 is the centroid of ring C27–C32,

Cg2 is the centroid of ring C23–C27/C32,

Cg3 is the centroid of ring C14–C19,

Cg4 is the centroid of ring C1–C5/C10 and

Cg5 is the centroid of ring C5–C10.

Experimental top

Under solvent-free conditions, a mixture of benzene-1,4-dicarboxaldehyde (0.12 g, 0.93 mmol) and (S)-(-)-1-naphthylethylamine (0.32 g, 1.8 mmol) were mixed at 298 K, giving a white solid. The crude material was recrystallized twice from CH2Cl2, affording colorless crystals suitable for X-ray diffraction. Yield: 87%; m.p. 438 K (165 °C); [α]D25 = +413.3 (c 1, CHCl3). IR (KBr): 1632 cm-1 (CN). 1H-NMR (400 MHz, CDCl3/TMS): δ = 1.73 (d, 6 H, CHCH3), 5.35 (q, 2H, CH), 7.45–8.24 (m, 18 H, Ar), 8.42 (s, 2 H, HC=N). 13C-NMR (100 MHz, CDCl3/TMS) δ = 24.4 (CCH3), 65.6 (CHCH3), 123.5 (Ar), 124.0 (Ar), 125.3 (Ar), 125.6 (Ar), 125.8 (Ar), 127.3 (Ar), 128.4 (Ar), 128.9 (Ar), 130.5 (Ar), 133.9 (Ar), 138.3 (Ar), 140.9 (Ar), 159.1 (HC=N). MS—EI: m/z= 440 (M+) for C32H28N2.

Refinement top

All H atoms were placed in idealized positions with C—H bond lengths fixed to 0.93 (aromatic), 0.96 (methyl) or 0.98 Å (methine), and with methyl groups allowed to rotate about their C—C bonds. A riding refinement was applied, and isotropic displacement parameters were computed as Uiso(H) = 1.5Ueq(carrier atom) for the methyl groups and Uiso(H) = 1.2Ueq(carrier atom) otherwise. Friedel pairs (1571) were merged and the absolute configuration inferred from that of the commercial optically pure amine used as starting material.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound, with the asymmetric unit shown in green. Dashed lines represent C—H···π interactions in the crystal, and centroids of involved π systems have been represented with red spheres. Some H atoms not involved in the network of contacts have been omitted for clarity.
1,4-Bis{(+)-(S)-[1-(1-naphthyl)ethyl]iminomethyl}benzene top
Crystal data top
C32H28N2Dx = 1.180 Mg m3
Mr = 440.56Melting point: 438 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 100 reflections
a = 8.391 (3) Åθ = 4.8–11.4°
b = 15.102 (5) ŵ = 0.07 mm1
c = 19.569 (7) ÅT = 298 K
V = 2479.6 (14) Å3Needle, colorless
Z = 40.6 × 0.2 × 0.2 mm
F(000) = 936
Data collection top
Siemens P4
diffractometer
Rint = 0.162
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.1°
Graphite monochromatorh = 96
ω scansk = 1717
6140 measured reflectionsl = 2322
2491 independent reflections3 standard reflections every 97 reflections
1445 reflections with I > 2σ(I) intensity decay: 2.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.384P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2491 reflectionsΔρmax = 0.18 e Å3
310 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.020 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C32H28N2V = 2479.6 (14) Å3
Mr = 440.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.391 (3) ŵ = 0.07 mm1
b = 15.102 (5) ÅT = 298 K
c = 19.569 (7) Å0.6 × 0.2 × 0.2 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.162
6140 measured reflections3 standard reflections every 97 reflections
2491 independent reflections intensity decay: 2.5%
1445 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.10Δρmax = 0.18 e Å3
2491 reflectionsΔρmin = 0.18 e Å3
310 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1296 (6)0.6293 (2)0.04836 (18)0.0727 (12)
N20.0862 (6)1.0684 (2)0.17915 (19)0.0772 (13)
C10.0418 (6)0.4748 (2)0.0380 (2)0.0627 (12)
C20.0244 (7)0.4806 (3)0.1019 (2)0.0737 (14)
H2A0.00070.52920.12920.088*
C30.1255 (8)0.4159 (3)0.1265 (3)0.0870 (17)
H3A0.16940.42190.16990.104*
C40.1613 (8)0.3441 (3)0.0885 (3)0.0872 (17)
H4A0.22840.30070.10610.105*
C50.0977 (7)0.3344 (3)0.0223 (3)0.0708 (13)
C60.1344 (8)0.2612 (3)0.0191 (3)0.0862 (17)
H6A0.19860.21650.00140.103*
C70.0796 (8)0.2534 (3)0.0837 (3)0.0876 (17)
H7A0.10630.20420.10990.105*
C80.0173 (8)0.3197 (3)0.1110 (3)0.0799 (16)
H8A0.05280.31540.15590.096*
C90.0604 (7)0.3912 (3)0.0719 (2)0.0708 (13)
H9A0.12760.43400.09030.085*
C100.0046 (6)0.4010 (2)0.0043 (2)0.0633 (12)
C110.1588 (7)0.5439 (3)0.0144 (3)0.0733 (14)
H11A0.14960.55140.03520.088*
C120.3255 (7)0.5134 (3)0.0319 (4)0.107 (2)
H12A0.40090.55760.01790.161*
H12B0.34770.45890.00850.161*
H12C0.33370.50430.08030.161*
C130.1601 (7)0.6977 (3)0.0141 (2)0.0708 (14)
H13A0.19310.69080.03100.085*
C140.1463 (7)0.7871 (3)0.0412 (2)0.0643 (13)
C150.0690 (8)0.8039 (3)0.1020 (2)0.0793 (16)
H15A0.02090.75760.12570.095*
C160.0622 (8)0.8888 (3)0.1283 (2)0.0784 (16)
H16A0.01130.89900.16970.094*
C170.1308 (7)0.9588 (3)0.0932 (2)0.0642 (12)
C180.2021 (7)0.9427 (3)0.0316 (2)0.0670 (13)
H18A0.24500.98940.00670.080*
C190.2112 (7)0.8571 (3)0.0060 (2)0.0688 (13)
H19A0.26180.84710.03560.083*
C200.1253 (7)1.0499 (3)0.1189 (2)0.0695 (14)
H20A0.15171.09590.08940.083*
C210.0880 (7)1.1625 (3)0.1993 (2)0.0719 (14)
H21A0.10131.19940.15850.086*
C220.0707 (8)1.1827 (3)0.2317 (3)0.0884 (16)
H22A0.15431.17160.19940.133*
H22B0.07351.24370.24540.133*
H22C0.08531.14550.27110.133*
C230.2264 (7)1.1784 (3)0.2475 (2)0.0694 (14)
C240.2964 (9)1.1093 (3)0.2803 (2)0.0887 (17)
H24A0.25751.05240.27290.106*
C250.4234 (11)1.1211 (5)0.3240 (3)0.116 (2)
H25A0.46901.07240.34550.139*
C260.4811 (10)1.2020 (5)0.3357 (3)0.115 (2)
H26A0.56651.20920.36550.138*
C270.4139 (9)1.2771 (4)0.3034 (3)0.0903 (18)
C280.4724 (11)1.3636 (5)0.3141 (3)0.117 (3)
H28A0.55841.37210.34330.141*
C290.4064 (11)1.4349 (4)0.2826 (4)0.115 (3)
H29A0.44691.49130.29030.137*
C300.2805 (10)1.4230 (4)0.2398 (3)0.102 (2)
H30A0.23521.47180.21840.123*
C310.2197 (8)1.3413 (3)0.2279 (2)0.0793 (15)
H31A0.13391.33510.19810.095*
C320.2831 (7)1.2664 (3)0.2593 (2)0.0710 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.082 (3)0.0544 (19)0.081 (2)0.010 (2)0.003 (2)0.0083 (18)
N20.104 (4)0.056 (2)0.072 (2)0.013 (2)0.002 (3)0.0035 (18)
C10.066 (3)0.047 (2)0.076 (3)0.007 (2)0.006 (3)0.000 (2)
C20.086 (4)0.061 (2)0.074 (3)0.004 (3)0.004 (3)0.001 (2)
C30.098 (5)0.081 (3)0.082 (3)0.013 (4)0.011 (3)0.009 (3)
C40.088 (4)0.072 (3)0.102 (4)0.015 (3)0.012 (4)0.012 (3)
C50.064 (3)0.051 (2)0.098 (3)0.003 (2)0.012 (3)0.001 (2)
C60.082 (4)0.055 (3)0.122 (5)0.007 (3)0.020 (4)0.008 (3)
C70.089 (4)0.061 (3)0.112 (4)0.001 (3)0.027 (4)0.019 (3)
C80.085 (4)0.068 (3)0.087 (3)0.015 (3)0.020 (3)0.019 (3)
C90.074 (3)0.060 (2)0.078 (3)0.001 (3)0.009 (3)0.004 (2)
C100.063 (3)0.051 (2)0.076 (3)0.005 (2)0.013 (3)0.001 (2)
C110.086 (4)0.052 (2)0.082 (3)0.012 (3)0.009 (3)0.013 (2)
C120.075 (4)0.081 (3)0.166 (6)0.016 (3)0.017 (4)0.026 (4)
C130.081 (4)0.058 (2)0.074 (3)0.010 (3)0.001 (3)0.008 (2)
C140.074 (4)0.054 (2)0.065 (2)0.012 (3)0.004 (3)0.003 (2)
C150.109 (5)0.060 (3)0.069 (3)0.020 (3)0.012 (3)0.001 (2)
C160.106 (5)0.065 (3)0.064 (3)0.012 (3)0.013 (3)0.004 (2)
C170.070 (3)0.053 (2)0.070 (2)0.012 (2)0.003 (3)0.003 (2)
C180.071 (3)0.055 (2)0.074 (3)0.015 (3)0.011 (3)0.000 (2)
C190.073 (3)0.060 (2)0.073 (3)0.008 (3)0.008 (3)0.001 (2)
C200.078 (4)0.056 (2)0.074 (3)0.009 (3)0.001 (3)0.001 (2)
C210.089 (4)0.055 (2)0.072 (3)0.003 (3)0.001 (3)0.006 (2)
C220.085 (4)0.082 (3)0.099 (4)0.002 (3)0.002 (3)0.002 (3)
C230.075 (4)0.070 (3)0.063 (3)0.004 (3)0.003 (3)0.004 (2)
C240.113 (5)0.076 (3)0.077 (3)0.009 (4)0.004 (4)0.005 (3)
C250.126 (7)0.123 (5)0.098 (4)0.022 (5)0.037 (5)0.011 (4)
C260.104 (6)0.159 (6)0.082 (4)0.009 (6)0.027 (4)0.007 (4)
C270.087 (5)0.109 (4)0.075 (3)0.011 (4)0.002 (3)0.018 (3)
C280.120 (6)0.144 (6)0.089 (4)0.056 (6)0.008 (4)0.034 (4)
C290.147 (8)0.094 (4)0.103 (4)0.046 (5)0.024 (5)0.029 (4)
C300.139 (7)0.080 (3)0.088 (3)0.017 (4)0.020 (4)0.018 (3)
C310.098 (4)0.065 (3)0.076 (3)0.005 (3)0.006 (3)0.013 (2)
C320.076 (4)0.073 (3)0.064 (3)0.005 (3)0.003 (3)0.014 (2)
Geometric parameters (Å, º) top
N1—C131.257 (5)C15—H15A0.9300
N1—C111.472 (5)C16—C171.386 (6)
N2—C201.255 (5)C16—H16A0.9300
N2—C211.476 (5)C17—C181.367 (6)
C1—C21.371 (6)C17—C201.465 (5)
C1—C101.423 (5)C18—C191.388 (5)
C1—C111.505 (6)C18—H18A0.9300
C2—C31.380 (7)C19—H19A0.9300
C2—H2A0.9300C20—H20A0.9300
C3—C41.350 (7)C21—C221.506 (8)
C3—H3A0.9300C21—C231.515 (7)
C4—C51.409 (7)C21—H21A0.9800
C4—H4A0.9300C22—H22A0.9600
C5—C61.406 (6)C22—H22B0.9600
C5—C101.420 (6)C22—H22C0.9600
C6—C71.350 (8)C23—C241.359 (7)
C6—H6A0.9300C23—C321.430 (6)
C7—C81.396 (7)C24—C251.378 (10)
C7—H7A0.9300C24—H24A0.9300
C8—C91.371 (6)C25—C261.335 (8)
C8—H8A0.9300C25—H25A0.9300
C9—C101.412 (6)C26—C271.415 (8)
C9—H9A0.9300C26—H26A0.9300
C11—C121.511 (8)C27—C321.406 (8)
C11—H11A0.9800C27—C281.412 (8)
C12—H12A0.9600C28—C291.358 (9)
C12—H12B0.9600C28—H28A0.9300
C12—H12C0.9600C29—C301.360 (11)
C13—C141.456 (5)C29—H29A0.9300
C13—H13A0.9300C30—C311.355 (7)
C14—C191.375 (6)C30—H30A0.9300
C14—C151.379 (6)C31—C321.393 (7)
C15—C161.383 (6)C31—H31A0.9300
C13—N1—C11116.4 (4)C17—C16—H16A119.8
C20—N2—C21117.5 (4)C18—C17—C16118.8 (4)
C2—C1—C10119.4 (4)C18—C17—C20118.9 (4)
C2—C1—C11120.0 (4)C16—C17—C20122.2 (4)
C10—C1—C11120.5 (4)C17—C18—C19120.6 (4)
C1—C2—C3121.5 (4)C17—C18—H18A119.7
C1—C2—H2A119.2C19—C18—H18A119.7
C3—C2—H2A119.2C14—C19—C18120.9 (4)
C4—C3—C2120.9 (5)C14—C19—H19A119.6
C4—C3—H3A119.6C18—C19—H19A119.6
C2—C3—H3A119.6N2—C20—C17122.6 (4)
C3—C4—C5120.4 (5)N2—C20—H20A118.7
C3—C4—H4A119.8C17—C20—H20A118.7
C5—C4—H4A119.8N2—C21—C22107.3 (5)
C6—C5—C4121.9 (5)N2—C21—C23109.1 (4)
C6—C5—C10118.6 (5)C22—C21—C23112.5 (4)
C4—C5—C10119.5 (4)N2—C21—H21A109.3
C7—C6—C5122.3 (5)C22—C21—H21A109.3
C7—C6—H6A118.9C23—C21—H21A109.3
C5—C6—H6A118.9C21—C22—H22A109.5
C6—C7—C8119.6 (5)C21—C22—H22B109.5
C6—C7—H7A120.2H22A—C22—H22B109.5
C8—C7—H7A120.2C21—C22—H22C109.5
C9—C8—C7120.4 (5)H22A—C22—H22C109.5
C9—C8—H8A119.8H22B—C22—H22C109.5
C7—C8—H8A119.8C24—C23—C32119.6 (5)
C8—C9—C10121.2 (5)C24—C23—C21120.2 (4)
C8—C9—H9A119.4C32—C23—C21120.2 (4)
C10—C9—H9A119.4C23—C24—C25121.8 (6)
C9—C10—C5118.0 (4)C23—C24—H24A119.1
C9—C10—C1123.7 (4)C25—C24—H24A119.1
C5—C10—C1118.3 (4)C26—C25—C24120.4 (6)
N1—C11—C1111.1 (4)C26—C25—H25A119.8
N1—C11—C12108.6 (5)C24—C25—H25A119.8
C1—C11—C12108.9 (4)C25—C26—C27120.8 (6)
N1—C11—H11A109.4C25—C26—H26A119.6
C1—C11—H11A109.4C27—C26—H26A119.6
C12—C11—H11A109.4C32—C27—C28117.9 (6)
C11—C12—H12A109.5C32—C27—C26119.6 (5)
C11—C12—H12B109.5C28—C27—C26122.5 (7)
H12A—C12—H12B109.5C29—C28—C27121.6 (6)
C11—C12—H12C109.5C29—C28—H28A119.2
H12A—C12—H12C109.5C27—C28—H28A119.2
H12B—C12—H12C109.5C28—C29—C30119.5 (6)
N1—C13—C14123.4 (4)C28—C29—H29A120.3
N1—C13—H13A118.3C30—C29—H29A120.3
C14—C13—H13A118.3C31—C30—C29121.3 (7)
C19—C14—C15118.5 (4)C31—C30—H30A119.4
C19—C14—C13119.9 (4)C29—C30—H30A119.4
C15—C14—C13121.5 (4)C30—C31—C32121.3 (6)
C14—C15—C16120.7 (4)C30—C31—H31A119.4
C14—C15—H15A119.7C32—C31—H31A119.4
C16—C15—H15A119.7C31—C32—C27118.4 (5)
C15—C16—C17120.5 (4)C31—C32—C23123.8 (5)
C15—C16—H16A119.8C27—C32—C23117.8 (5)
C10—C1—C2—C30.6 (8)C16—C17—C18—C192.5 (8)
C11—C1—C2—C3176.5 (5)C20—C17—C18—C19179.3 (5)
C1—C2—C3—C40.6 (9)C15—C14—C19—C181.3 (8)
C2—C3—C4—C50.9 (9)C13—C14—C19—C18178.7 (5)
C3—C4—C5—C6179.0 (6)C17—C18—C19—C141.2 (8)
C3—C4—C5—C100.0 (8)C21—N2—C20—C17178.9 (5)
C4—C5—C6—C7177.0 (6)C18—C17—C20—N2168.0 (5)
C10—C5—C6—C72.0 (8)C16—C17—C20—N213.9 (9)
C5—C6—C7—C80.2 (9)C20—N2—C21—C22129.1 (6)
C6—C7—C8—C91.8 (8)C20—N2—C21—C23108.7 (5)
C7—C8—C9—C101.9 (8)N2—C21—C23—C2418.5 (7)
C8—C9—C10—C50.1 (7)C22—C21—C23—C24100.5 (6)
C8—C9—C10—C1178.3 (5)N2—C21—C23—C32162.1 (5)
C6—C5—C10—C91.8 (7)C22—C21—C23—C3278.9 (6)
C4—C5—C10—C9177.2 (5)C32—C23—C24—C251.2 (9)
C6—C5—C10—C1179.8 (5)C21—C23—C24—C25179.5 (6)
C4—C5—C10—C11.2 (7)C23—C24—C25—C260.3 (11)
C2—C1—C10—C9176.8 (5)C24—C25—C26—C270.2 (11)
C11—C1—C10—C96.1 (7)C25—C26—C27—C321.0 (10)
C2—C1—C10—C51.5 (7)C25—C26—C27—C28179.5 (7)
C11—C1—C10—C5175.5 (4)C32—C27—C28—C290.4 (10)
C13—N1—C11—C1147.5 (5)C26—C27—C28—C29180.0 (7)
C13—N1—C11—C1292.8 (6)C27—C28—C29—C300.1 (11)
C2—C1—C11—N127.7 (7)C28—C29—C30—C310.1 (10)
C10—C1—C11—N1155.2 (4)C29—C30—C31—C320.4 (9)
C2—C1—C11—C1291.8 (6)C30—C31—C32—C270.7 (8)
C10—C1—C11—C1285.2 (6)C30—C31—C32—C23178.5 (5)
C11—N1—C13—C14176.5 (6)C28—C27—C32—C310.7 (8)
N1—C13—C14—C19167.0 (5)C26—C27—C32—C31179.7 (6)
N1—C13—C14—C1513.0 (9)C28—C27—C32—C23178.7 (5)
C19—C14—C15—C162.4 (9)C26—C27—C32—C231.8 (8)
C13—C14—C15—C16177.6 (6)C24—C23—C32—C31179.7 (6)
C14—C15—C16—C171.1 (9)C21—C23—C32—C310.9 (8)
C15—C16—C17—C181.4 (9)C24—C23—C32—C271.9 (7)
C15—C16—C17—C20179.5 (6)C21—C23—C32—C27178.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.933.294.042 (6)140
C8—H8A···Cg2i0.933.143.797 (5)129
C12—H12A···Cg3ii0.962.793.677 (6)154
C18—H18A···Cg4ii0.932.623.520 (5)163
C20—H20A···Cg5ii0.932.983.681 (5)133
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC32H28N2
Mr440.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.391 (3), 15.102 (5), 19.569 (7)
V3)2479.6 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.6 × 0.2 × 0.2
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6140, 2491, 1445
Rint0.162
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.163, 1.10
No. of reflections2491
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.933.294.042 (6)139.5
C8—H8A···Cg2i0.933.143.797 (5)129.2
C12—H12A···Cg3ii0.962.793.677 (6)154.0
C18—H18A···Cg4ii0.932.623.520 (5)163.2
C20—H20A···Cg5ii0.932.983.681 (5)133.1
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

Partial support from VIEP–UAP (GUPJ-NAT08-G) and SEP/PIFI-3 (CA-150 2006–22-08) is acknowledged.

References

First citationAllouchi, H., Bideau, J. P., Cotrait, M., Destrade, Ch. & Nguyen, H. T. (1994). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 239, 153–164.  CrossRef CAS Web of Science Google Scholar
First citationEspinosa Leija, A., Hernández, G., Cruz, S., Bernès, S. & Gutiérrez, R. (2009). Acta Cryst. E65, o1316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamaker, C. G. & Oberts, B. P. (2006). J. Chem. Crystallogr. 36, 735–742.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416–16425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNoyori, R. (2005). Chem. Commun. pp. 1807–1811.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTovar, A., Penña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.  Google Scholar
First citationWatanabe, J. & Fukuda, K. (2008). Jpn. Kokai Tokkyo Koho Patent JP 2008106201.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds