metal-organic compounds
Aqua{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)
aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn
The title complex, [Ni(C18H18N2O4)(H2O)], lies on a mirror plane with the NiII ion coordinated by two N and two O atoms of a tetradentate Schiff base ligand and one water O atom in a distorted square-pyramidal enviroment. The –CH2–CH2– group of the ligand is disordered equally over two sites about the mirror plane. The dihedral angle between the mean planes of the two symmetry-related chelate rings is 37.16 (6)°. In the intermolecular O—H⋯O hydrogen bonds link complex molecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak intermolecular C—H⋯O hydrogen bonds into a two-dimensional network.
Related literature
For background to Schiff base complexes, see: Akine et al. (2005); Gamovski et al. (1993); Garg & Kumar (2003); Tarafder et al. (2002); Yang et al. (2000). For a related see: Wang et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809034278/lh2877sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034278/lh2877Isup2.hkl
1,2-ethylenediamine (1 mmol, 60.10 mg) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (3 ml) of 3-methoxysalicylaldehyde (1 mmol, 152.14 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of nickel chloride (1 mmol, 237.69 mg) was added dropwise and stirred for another 5 h. The solution was left at room temperature for 15 days, whereupon green block crystals suitable for X-ray diffraction were obtained.
All H atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å, O—H = 0.85 Å) and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C), 1.5Ueq(methyl C) or 1.2Ueq(O).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C18H18N2O4)(H2O)] | F(000) = 840 |
Mr = 403.07 | Dx = 1.551 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 3742 reflections |
a = 9.2712 (11) Å | θ = 2.5–27.9° |
b = 24.763 (3) Å | µ = 1.16 mm−1 |
c = 7.5185 (10) Å | T = 298 K |
V = 1726.1 (4) Å3 | Block, green |
Z = 4 | 0.48 × 0.42 × 0.26 mm |
Bruker SMART 1000 CCD area-detector diffractometer | 1550 independent reflections |
Radiation source: fine-focus sealed tube | 1368 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.607, Tmax = 0.753 | k = −29→27 |
7520 measured reflections | l = −5→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0321P)2 + 0.8008P] where P = (Fo2 + 2Fc2)/3 |
1550 reflections | (Δ/σ)max = 0.001 |
131 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
[Ni(C18H18N2O4)(H2O)] | V = 1726.1 (4) Å3 |
Mr = 403.07 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 9.2712 (11) Å | µ = 1.16 mm−1 |
b = 24.763 (3) Å | T = 298 K |
c = 7.5185 (10) Å | 0.48 × 0.42 × 0.26 mm |
Bruker SMART 1000 CCD area-detector diffractometer | 1550 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1368 reflections with I > 2σ(I) |
Tmin = 0.607, Tmax = 0.753 | Rint = 0.029 |
7520 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.19 | Δρmax = 0.16 e Å−3 |
1550 reflections | Δρmin = −0.53 e Å−3 |
131 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.42518 (4) | 0.7500 | 0.52345 (5) | 0.03327 (16) | |
N1 | 0.5687 (2) | 0.69791 (9) | 0.4405 (3) | 0.0577 (6) | |
O1 | 0.28010 (18) | 0.69435 (6) | 0.5505 (2) | 0.0442 (4) | |
O2 | 0.04869 (19) | 0.63591 (7) | 0.5874 (3) | 0.0602 (5) | |
O3 | 0.5119 (2) | 0.7500 | 0.8191 (3) | 0.0477 (6) | |
H3 | 0.5568 | 0.7224 | 0.8569 | 0.057* | |
C1 | 0.5493 (3) | 0.64757 (11) | 0.4103 (4) | 0.0545 (7) | |
H1 | 0.6273 | 0.6282 | 0.3657 | 0.065* | |
C2 | 0.4180 (3) | 0.61846 (10) | 0.4391 (3) | 0.0451 (6) | |
C3 | 0.2919 (3) | 0.64343 (9) | 0.5057 (3) | 0.0402 (6) | |
C4 | 0.1686 (3) | 0.60950 (10) | 0.5265 (3) | 0.0460 (6) | |
C5 | 0.1735 (3) | 0.55512 (11) | 0.4884 (4) | 0.0587 (8) | |
H5 | 0.0919 | 0.5339 | 0.5055 | 0.070* | |
C6 | 0.2999 (4) | 0.53165 (11) | 0.4244 (4) | 0.0675 (9) | |
H6 | 0.3025 | 0.4950 | 0.3984 | 0.081* | |
C7 | 0.4188 (3) | 0.56250 (11) | 0.4003 (4) | 0.0592 (7) | |
H7 | 0.5028 | 0.5466 | 0.3574 | 0.071* | |
C8 | −0.0821 (3) | 0.60639 (13) | 0.5993 (4) | 0.0647 (8) | |
H8A | −0.1042 | 0.5908 | 0.4855 | 0.097* | |
H8B | −0.1587 | 0.6302 | 0.6344 | 0.097* | |
H8C | −0.0719 | 0.5782 | 0.6859 | 0.097* | |
C9 | 0.7178 (7) | 0.7189 (3) | 0.4502 (9) | 0.0473 (14) | 0.50 |
H9A | 0.7867 | 0.6957 | 0.3901 | 0.057* | 0.50 |
H9B | 0.7479 | 0.7246 | 0.5723 | 0.057* | 0.50 |
C10 | 0.6943 (7) | 0.7720 (3) | 0.3518 (9) | 0.0544 (17) | 0.50 |
H10A | 0.7810 | 0.7939 | 0.3574 | 0.065* | 0.50 |
H10B | 0.6726 | 0.7650 | 0.2278 | 0.065* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0290 (2) | 0.0330 (2) | 0.0378 (3) | 0.000 | 0.00299 (18) | 0.000 |
N1 | 0.0405 (12) | 0.0549 (14) | 0.0778 (16) | −0.0030 (10) | 0.0128 (12) | −0.0225 (12) |
O1 | 0.0373 (9) | 0.0355 (9) | 0.0597 (11) | −0.0010 (7) | 0.0046 (8) | −0.0087 (8) |
O2 | 0.0454 (11) | 0.0488 (11) | 0.0864 (14) | −0.0098 (9) | 0.0128 (10) | −0.0104 (10) |
O3 | 0.0477 (14) | 0.0425 (13) | 0.0530 (15) | 0.000 | −0.0102 (12) | 0.000 |
C1 | 0.0427 (15) | 0.0547 (17) | 0.0660 (18) | 0.0056 (13) | 0.0070 (13) | −0.0214 (14) |
C2 | 0.0498 (15) | 0.0426 (14) | 0.0428 (14) | 0.0031 (12) | 0.0001 (12) | −0.0074 (11) |
C3 | 0.0437 (14) | 0.0385 (13) | 0.0386 (13) | 0.0008 (11) | −0.0034 (11) | −0.0022 (10) |
C4 | 0.0468 (15) | 0.0422 (14) | 0.0492 (15) | −0.0034 (11) | 0.0006 (12) | −0.0051 (11) |
C5 | 0.0609 (18) | 0.0424 (15) | 0.073 (2) | −0.0111 (13) | 0.0024 (15) | −0.0039 (13) |
C6 | 0.081 (2) | 0.0335 (14) | 0.088 (2) | 0.0001 (15) | 0.0074 (19) | −0.0114 (14) |
C7 | 0.0620 (18) | 0.0454 (15) | 0.0703 (19) | 0.0081 (14) | 0.0064 (15) | −0.0127 (14) |
C8 | 0.0517 (17) | 0.075 (2) | 0.0676 (19) | −0.0234 (15) | 0.0137 (15) | −0.0146 (16) |
C9 | 0.035 (3) | 0.051 (3) | 0.056 (4) | 0.005 (2) | 0.000 (3) | −0.012 (3) |
C10 | 0.036 (3) | 0.062 (4) | 0.065 (4) | −0.001 (3) | 0.011 (3) | 0.010 (3) |
Ni1—O1 | 1.9364 (16) | C5—C6 | 1.393 (4) |
Ni1—O1i | 1.9364 (16) | C5—H5 | 0.9300 |
Ni1—N1i | 1.956 (2) | C6—C7 | 1.353 (4) |
Ni1—N1 | 1.956 (2) | C6—H6 | 0.9300 |
Ni1—O3 | 2.363 (2) | C7—H7 | 0.9300 |
N1—C1 | 1.280 (3) | C8—H8A | 0.9600 |
N1—C9 | 1.479 (7) | C8—H8B | 0.9600 |
N1—C10i | 1.535 (7) | C8—H8C | 0.9600 |
O1—C3 | 1.310 (3) | C9—C10i | 0.803 (7) |
O2—C4 | 1.369 (3) | C9—C10 | 1.525 (7) |
O2—C8 | 1.419 (3) | C9—C9i | 1.541 (13) |
O3—H3 | 0.8501 | C9—H9A | 0.9700 |
C1—C2 | 1.431 (4) | C9—H9B | 0.9700 |
C1—H1 | 0.9300 | C10—C9i | 0.803 (7) |
C2—C3 | 1.414 (3) | C10—C10i | 1.092 (13) |
C2—C7 | 1.416 (4) | C10—N1i | 1.535 (7) |
C3—C4 | 1.428 (3) | C10—H10A | 0.9700 |
C4—C5 | 1.377 (4) | C10—H10B | 0.9700 |
O1—Ni1—O1i | 90.74 (10) | C6—C7—H7 | 119.3 |
O1—Ni1—N1i | 167.34 (9) | C2—C7—H7 | 119.3 |
O1i—Ni1—N1i | 92.11 (8) | O2—C8—H8A | 109.5 |
O1—Ni1—N1 | 92.11 (8) | O2—C8—H8B | 109.5 |
O1i—Ni1—N1 | 167.34 (9) | H8A—C8—H8B | 109.5 |
N1i—Ni1—N1 | 82.55 (14) | O2—C8—H8C | 109.5 |
O1—Ni1—O3 | 97.90 (7) | H8A—C8—H8C | 109.5 |
O1i—Ni1—O3 | 97.90 (7) | H8B—C8—H8C | 109.5 |
N1i—Ni1—O3 | 93.93 (9) | C10i—C9—N1 | 78.4 (8) |
N1—Ni1—O3 | 93.93 (9) | C10i—C9—C10 | 43.4 (8) |
C1—N1—C9 | 118.9 (3) | N1—C9—C10 | 98.4 (5) |
C1—N1—C10i | 120.1 (3) | C10i—C9—C9i | 73.8 (8) |
C9—N1—C10i | 30.8 (3) | N1—C9—C9i | 110.6 (3) |
C1—N1—Ni1 | 127.10 (19) | C10—C9—C9i | 30.4 (3) |
C9—N1—Ni1 | 112.9 (3) | C10i—C9—H9A | 85.1 |
C10i—N1—Ni1 | 109.6 (3) | N1—C9—H9A | 112.6 |
C3—O1—Ni1 | 126.86 (15) | C10—C9—H9A | 112.2 |
C4—O2—C8 | 118.0 (2) | C9i—C9—H9A | 126.2 |
Ni1—O3—H3 | 118.8 | C10i—C9—H9B | 155.4 |
N1—C1—C2 | 125.7 (2) | N1—C9—H9B | 111.5 |
N1—C1—H1 | 117.2 | C10—C9—H9B | 112.0 |
C2—C1—H1 | 117.2 | C9i—C9—H9B | 81.6 |
C3—C2—C7 | 120.3 (2) | H9A—C9—H9B | 109.8 |
C3—C2—C1 | 122.4 (2) | C9i—C10—C10i | 106.2 (8) |
C7—C2—C1 | 117.2 (2) | C9i—C10—C9 | 75.9 (9) |
O1—C3—C2 | 125.5 (2) | C10i—C10—C9 | 30.4 (3) |
O1—C3—C4 | 118.1 (2) | C9i—C10—N1i | 70.7 (8) |
C2—C3—C4 | 116.3 (2) | C10i—C10—N1i | 119.0 (3) |
O2—C4—C5 | 124.3 (2) | C9—C10—N1i | 108.4 (5) |
O2—C4—C3 | 113.9 (2) | C9i—C10—H10A | 65.1 |
C5—C4—C3 | 121.7 (3) | C10i—C10—H10A | 124.0 |
C4—C5—C6 | 120.5 (3) | C9—C10—H10A | 110.1 |
C4—C5—H5 | 119.8 | N1i—C10—H10A | 109.8 |
C6—C5—H5 | 119.8 | C9i—C10—H10B | 172.9 |
C7—C6—C5 | 119.7 (3) | C10i—C10—H10B | 79.6 |
C7—C6—H6 | 120.1 | C9—C10—H10B | 109.9 |
C5—C6—H6 | 120.1 | N1i—C10—H10B | 110.4 |
C6—C7—C2 | 121.4 (3) | H10A—C10—H10B | 108.4 |
O1—Ni1—N1—C1 | 4.5 (3) | C8—O2—C4—C5 | −5.1 (4) |
O1i—Ni1—N1—C1 | −98.3 (4) | C8—O2—C4—C3 | 175.3 (2) |
N1i—Ni1—N1—C1 | −163.9 (2) | O1—C3—C4—O2 | 2.0 (3) |
O3—Ni1—N1—C1 | 102.6 (3) | C2—C3—C4—O2 | −178.5 (2) |
O1—Ni1—N1—C9 | −162.9 (3) | O1—C3—C4—C5 | −177.7 (2) |
O1i—Ni1—N1—C9 | 94.2 (5) | C2—C3—C4—C5 | 1.8 (4) |
N1i—Ni1—N1—C9 | 28.6 (4) | O2—C4—C5—C6 | 179.1 (3) |
O3—Ni1—N1—C9 | −64.8 (3) | C3—C4—C5—C6 | −1.3 (4) |
O1—Ni1—N1—C10i | 164.1 (3) | C4—C5—C6—C7 | 0.3 (5) |
O1i—Ni1—N1—C10i | 61.3 (5) | C5—C6—C7—C2 | 0.1 (5) |
N1i—Ni1—N1—C10i | −4.3 (3) | C3—C2—C7—C6 | 0.5 (5) |
O3—Ni1—N1—C10i | −97.8 (3) | C1—C2—C7—C6 | 179.6 (3) |
O1i—Ni1—O1—C3 | 162.41 (15) | C1—N1—C9—C10i | 101.3 (8) |
N1i—Ni1—O1—C3 | 59.4 (4) | Ni1—N1—C9—C10i | −90.2 (8) |
N1—Ni1—O1—C3 | −5.2 (2) | C1—N1—C9—C10 | 140.0 (4) |
O3—Ni1—O1—C3 | −99.51 (19) | C10i—N1—C9—C10 | 38.8 (7) |
C9—N1—C1—C2 | 163.8 (4) | Ni1—N1—C9—C10 | −51.4 (4) |
C10i—N1—C1—C2 | −160.6 (4) | C1—N1—C9—C9i | 168.8 (2) |
Ni1—N1—C1—C2 | −2.9 (5) | C10i—N1—C9—C9i | 67.6 (8) |
N1—C1—C2—C3 | 0.2 (5) | Ni1—N1—C9—C9i | −22.6 (3) |
N1—C1—C2—C7 | −178.9 (3) | C10i—C9—C10—C9i | 180.000 (4) |
Ni1—O1—C3—C2 | 4.5 (3) | N1—C9—C10—C9i | 116.8 (6) |
Ni1—O1—C3—C4 | −176.08 (17) | N1—C9—C10—C10i | −63.2 (6) |
C7—C2—C3—O1 | 178.0 (3) | C9i—C9—C10—C10i | 180.000 (10) |
C1—C2—C3—O1 | −1.0 (4) | C10i—C9—C10—N1i | 116.3 (6) |
C7—C2—C3—C4 | −1.4 (4) | N1—C9—C10—N1i | 53.1 (4) |
C1—C2—C3—C4 | 179.5 (2) | C9i—C9—C10—N1i | −63.7 (6) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1ii | 0.85 | 2.29 | 3.007 (3) | 142 |
O3—H3···O2ii | 0.85 | 2.18 | 2.9313 (19) | 147 |
C10—H10B···O1iii | 0.97 | 2.53 | 3.236 (7) | 130 |
C9—H9B···O3ii | 0.97 | 2.66 | 3.322 (7) | 126 |
Symmetry codes: (ii) x+1/2, y, −z+3/2; (iii) x+1/2, −y+3/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C18H18N2O4)(H2O)] |
Mr | 403.07 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 298 |
a, b, c (Å) | 9.2712 (11), 24.763 (3), 7.5185 (10) |
V (Å3) | 1726.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.48 × 0.42 × 0.26 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.607, 0.753 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7520, 1550, 1368 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.078, 1.19 |
No. of reflections | 1550 |
No. of parameters | 131 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.53 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—O1 | 1.9364 (16) | Ni1—N1 | 1.956 (2) |
Ni1—O1i | 1.9364 (16) | Ni1—O3 | 2.363 (2) |
Ni1—N1i | 1.956 (2) | ||
O1—Ni1—O1i | 90.74 (10) | N1i—Ni1—N1 | 82.55 (14) |
O1—Ni1—N1i | 167.34 (9) | O1—Ni1—O3 | 97.90 (7) |
O1—Ni1—N1 | 92.11 (8) | N1—Ni1—O3 | 93.93 (9) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1ii | 0.85 | 2.29 | 3.007 (3) | 142.0 |
O3—H3···O2ii | 0.85 | 2.18 | 2.9313 (19) | 146.8 |
C10—H10B···O1iii | 0.97 | 2.53 | 3.236 (7) | 129.9 |
C9—H9B···O3ii | 0.97 | 2.66 | 3.322 (7) | 126.2 |
Symmetry codes: (ii) x+1/2, y, −z+3/2; (iii) x+1/2, −y+3/2, −z+1/2. |
Acknowledgements
The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.
References
Akine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704–1711. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. CrossRef Web of Science Google Scholar
Garg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229–232. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698. Web of Science CSD CrossRef CAS Google Scholar
Wang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059–m1060. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599–2604. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes play an important role in the stereochemical models of transition metal coordination chemistry with their easy preparation, diversition and structural variation (Gamovski et al.,1993). They also have been intensively investigated owing to their strong coordination capability and diverse biological activities, such as antibacterial and antitumor activities (Yang et al., 2000; Tarafder et al., 2002). Therefore, synthesis of new shiff base Nickel(II) complexes is still the aim of many recent investigations (Garg & Kumar, 2003; Akine et al., 2005). As part of a series of crystal structure studies (Wang et al., 2007), we report here the synthesis and crystal structure of the title compound.
In the molecular structure (Fig. 1), The NiII ion is five coordinated by two N and two O atoms of a new tetradentate Schiff base ligand and one O atom of water molecule in a distorted square-pyramidal configuration. Two nitrogen atoms and two oxygen atoms of Schiff base occupy the basal plane, and the O atom of the coordinated water molecule is in the apical position. The dihedral angle between the planes of the two symmetry realted Ni/N/C/C/C/O chelate rings is 37.16 (6)°. The molecule lies on a mirror plane and the -CH2-CH2- group of the ligand is disordered equally over two sites about the mirror plane.
In the crystal structure, intermolecular O—H···O hydrogen bonds link complex molecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak intermolecular C—H···O hydrogen bonds into a two-dimensional network (Fig. 2).