organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-oxo-2-[(4-sulfamoylphen­yl)hydra­zono]butyrate

aDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India, bDepartment of Chemistry, Udai Pratap College (Autonomuos), Varanasi 221 002, India, and cDepartment of Inorganic and Physical Chemistry, Indian Institute of Sciences, Bangalore 560 012, India
*Correspondence e-mail: drkaushalbhu@yahoo.co.in

(Received 10 August 2009; accepted 12 September 2009; online 19 September 2009)

In the title compound, C12H15N3O5S, an intra­molecular N—H⋯O hydrogen bond between the hydrazine unit and one of the carbonyl groups may influence the mol­ecular conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds, including one which is bifurcated, link the mol­ecules into a two-dimensional network.

Related literature

For background to sulfa drugs and their derivatives, see: Abbate et al. (2004[Abbate, F., Casini, A., Owa, T., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 217-223.]); Badr (2008[Badr, E. E. (2008). J. Disper. Sci. Technol. 29,1143-1149.]); Hanafy et al. (2007[Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol. 48, 47-50.]); Novinson et al. (1976[Novinson, T., Okabe, T., Robins, R. K. & Matthews, T. R. (1976). J. Med. Chem. 19, 517-520.]); Supuran et al. (2003[Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.]); Upadhyay et al. (2009[Upadhyay, K. K., Upadhyay, S., Kumar, K. & Prasad, R. (2009). J. Mol. Struct. 927, 60-68.]); Zhong et al. (2007[Zhong, Z., Chen, R., Xing, R., Chen, X., Liu, S., Guo, Z., Ji, X., Wang, L. & Li, P. (2007). Carbohydr. Res. 342, 2390-2395.]). For the synthesis of the title compound, see: Prakash & Gambhir (1964[Prakash, A. & Gambhir, I. R. (1964). J. Indian Chem. Soc. 41, 133-136.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3O5S

  • Mr = 313.33

  • Monoclinic, P 21 /n

  • a = 7.490 (6) Å

  • b = 14.819 (12) Å

  • c = 12.689 (10) Å

  • β = 95.219 (14)°

  • V = 1402.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.951

  • 11777 measured reflections

  • 3274 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.222

  • S = 0.87

  • 3274 reflections

  • 200 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 1.95 2.597 (5) 131
N3—H3B⋯O6i 0.77 (5) 2.33 (4) 2.941 (6) 137 (4)
N3—H3B⋯O5i 0.77 (5) 2.52 (5) 3.208 (6) 149 (5)
N3—H3A⋯O4ii 0.85 (5) 2.21 (5) 3.003 (6) 154 (4)
Symmetry codes: (i) -x, -y, -z+2; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfadrugs and their derivatives have attracted much attention due to their wide spectrum of pharamaceutical (Abbate et al., 2004; Badr, 2008; Supuran et al., 2003) and biological applications (Hanafy et al., 2007, Zhong et al., 2007). Recently we reported details of a diazo derivative of sulfathiazole (Upadhyay et al.,2009) as a naked eye sensor for Hg(II) in DMSO. Although the title compound (I) has been reported in the literature (Prakash & Gambhir, 1964) its crystal structure determination has not been undertaken until now.

The molecular structure of the title compound is shown in Fig. 1. An intramolecular N—H···O hydrogen bond between the hydrazine unit and one carbonyl groups may influence the molecular conformation. In the crystal structure, intermolecular N—H···O hydrogen bonds, including one which which is bifurcated, link molecules in a two-dimensional network (see Fig. 2).

Related literature top

For background to sulfa drugs and their derivatives, see: Abbate et al. (2004); Badr (2008); Hanafy et al. (2007); Novinson et al. (1976); Supuran et al. (2003); Upadhyay et al. (2009); Zhong et al. (2007). For the synthesis of the title compound, see: Prakash & Gambhir (1964).

Experimental top

Compound (I) was synthesized using the literature procedure (Novinson et al., 1976) as follows. Sulphanilamide (2 mmol, 344 mg) and sodium nitrite (~4 mmol, 300 mg) were dissolved separately in conc. HCl (2 ml) and distilled water (10 ml), respectively, followed by cooling on crushed ice. The cooled sodium nitrite solution was added to the sulphanilamide solution with constant stirring while maintaining the temperature. The resulting yellow solution was added to a mixture of ethyl aceto acetate (2 mmol, 0.25 ml) and sodium acetate (~37 mmol, 3 g) in distilled water (15 ml) with continuous stirring. The stirring was continued further for 2 h maintaining the temperature of the reaction vessel between 293–298 K. The resulting solids were filtered, washed with water, ethanol and finally, by diethyl ether. The crude product was recrystallized from a water–ethanol mixture (50% v/v) and dried in vacuo. Crystals were grown by layering a supersaturated solution of (I) in ethanol with diethylether and leaving for a few days.

Yield 76%. Spectroscopic anaylysis: 1HNMR (DMSO-d6, TMS, δp.p.m.) 11.60 (1H, –HN—N=C<), 7.85–7.54 (m, 4H, Ar—H), 7.34 (s, 2H, NH2),4.35–4.26 (2H, CH2), 2.50–2.42(3H, CH3 of C2H5), 1.33–1.26 (3H, CH3). 13C NMR (DMSO-d6, TMS, δ p.p.m.) 193.90 (>C=O),162.33 [C(OEt)=O], 145.16,138.31(C=C), 133.35, 127.36, 115.89, 114.76 (Ar—C), 61.37 (–CH2), 25.28,13.83 (–CH3).

Refinement top

H atoms were placed in calculated positions with C-H = 0.93 - 0.97Å and N-H = 0.86Å. They were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C) for methyl H atoms. The H atoms of the -NH2 group were refined independently with isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing intramolecular and intermolecular hydrogen bonds as hashed lines.
Ethyl 3-oxo-2-[(4-sulfamoylphenyl)hydrazono]butyrate top
Crystal data top
C12H15N3O5SF(000) = 656
Mr = 313.33Dx = 1.484 Mg m3
Monoclinic, P21/nMelting point: 398 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.490 (6) ÅCell parameters from 598 reflections
b = 14.819 (12) Åθ = 2.5–27.5°
c = 12.689 (10) ŵ = 0.26 mm1
β = 95.219 (14)°T = 293 K
V = 1402.6 (19) Å3Rectangular, colourless
Z = 40.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
3274 independent reflections
Radiation source: fine-focus sealed tube2177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 0.3 pixels mm-1θmax = 28.2°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1719
Tmin = 0.940, Tmax = 0.951l = 1616
11777 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full with fixed elements per cycleSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.1321P)2 + 2.1941P]
where P = (Fo2 + 2Fc2)/3
3274 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C12H15N3O5SV = 1402.6 (19) Å3
Mr = 313.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.490 (6) ŵ = 0.26 mm1
b = 14.819 (12) ÅT = 293 K
c = 12.689 (10) Å0.24 × 0.22 × 0.20 mm
β = 95.219 (14)°
Data collection top
Bruker SMART APEX
diffractometer
3274 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2177 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.951Rint = 0.052
11777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.59 e Å3
3274 reflectionsΔρmin = 0.32 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2438 (5)0.0661 (2)0.9456 (3)0.0391 (8)
C20.2126 (5)0.1343 (2)1.0159 (3)0.0429 (8)
H20.19830.12091.08620.051*
C30.2030 (5)0.2223 (2)0.9809 (3)0.0433 (8)
H30.18090.26841.02780.052*
C40.2258 (5)0.2424 (2)0.8772 (2)0.0372 (7)
C50.2609 (6)0.1745 (2)0.8081 (3)0.0518 (10)
H50.27900.18830.73840.062*
C60.2693 (6)0.0861 (2)0.8420 (3)0.0536 (10)
H60.29200.04010.79510.064*
C70.2498 (5)0.1296 (2)1.1080 (3)0.0400 (8)
C80.2482 (5)0.1381 (2)1.2239 (3)0.0451 (9)
C90.2452 (7)0.0539 (3)1.2876 (3)0.0659 (13)
H9A0.24110.06911.36090.099*
H9B0.14120.01901.26390.099*
H9C0.35130.01931.27910.099*
C100.2599 (5)0.2072 (2)1.0344 (3)0.0466 (9)
C110.2122 (7)0.3643 (3)0.9952 (4)0.0624 (12)
H11A0.14980.41471.02400.075*
H11B0.14580.34580.92960.075*
C120.3910 (8)0.3914 (3)0.9752 (5)0.0868 (17)
H12A0.44910.34270.94190.130*
H12B0.38470.44310.92940.130*
H12C0.45830.40641.04090.130*
H3A0.042 (6)0.330 (3)0.688 (4)0.055 (13)*
H3B0.064 (6)0.334 (3)0.769 (4)0.049 (14)*
N10.2500 (4)0.02524 (19)0.9754 (2)0.0469 (8)
H10.25670.06670.92860.056*
N20.2454 (4)0.0464 (2)1.0745 (2)0.0417 (7)
N30.0211 (6)0.3532 (2)0.7471 (3)0.0481 (8)
O10.1619 (4)0.40903 (16)0.9163 (2)0.0565 (8)
O20.3416 (4)0.37652 (19)0.7692 (2)0.0581 (8)
O40.2924 (5)0.19684 (19)0.9443 (2)0.0711 (10)
O50.2233 (5)0.28696 (17)1.0729 (2)0.0620 (8)
O60.2547 (5)0.21135 (18)1.2667 (2)0.0703 (9)
S10.19753 (14)0.35341 (5)0.82925 (7)0.0425 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.0279 (16)0.0399 (17)0.0027 (14)0.0025 (15)0.0052 (13)
C20.062 (2)0.0381 (18)0.0278 (15)0.0020 (16)0.0020 (15)0.0040 (13)
C30.064 (2)0.0317 (17)0.0343 (16)0.0012 (15)0.0031 (15)0.0030 (13)
C40.052 (2)0.0285 (15)0.0305 (15)0.0009 (14)0.0022 (14)0.0018 (12)
C50.090 (3)0.0346 (18)0.0333 (17)0.0059 (19)0.0183 (18)0.0050 (14)
C60.094 (3)0.0294 (17)0.0392 (19)0.0098 (19)0.0148 (19)0.0008 (14)
C70.050 (2)0.0328 (17)0.0372 (17)0.0006 (14)0.0043 (15)0.0048 (13)
C80.055 (2)0.0417 (19)0.0383 (18)0.0101 (16)0.0017 (16)0.0054 (15)
C90.107 (4)0.049 (2)0.043 (2)0.015 (2)0.010 (2)0.0031 (18)
C100.064 (2)0.0351 (18)0.0416 (19)0.0099 (16)0.0103 (17)0.0076 (15)
C110.087 (3)0.043 (2)0.059 (3)0.006 (2)0.021 (2)0.0042 (18)
C120.091 (4)0.053 (3)0.112 (5)0.004 (3)0.009 (3)0.000 (3)
N10.073 (2)0.0307 (15)0.0374 (15)0.0042 (14)0.0051 (14)0.0063 (12)
N20.0537 (18)0.0352 (15)0.0361 (14)0.0017 (13)0.0032 (12)0.0083 (12)
N30.065 (2)0.0373 (17)0.0423 (18)0.0005 (16)0.0055 (16)0.0075 (14)
O10.088 (2)0.0294 (12)0.0521 (15)0.0011 (13)0.0082 (14)0.0060 (11)
O20.0708 (19)0.0462 (15)0.0591 (17)0.0080 (13)0.0152 (14)0.0121 (13)
O40.134 (3)0.0380 (15)0.0465 (15)0.0136 (16)0.0350 (18)0.0071 (12)
O50.113 (2)0.0307 (13)0.0460 (15)0.0019 (14)0.0270 (15)0.0046 (11)
O60.129 (3)0.0427 (16)0.0384 (14)0.0148 (17)0.0026 (16)0.0117 (12)
S10.0625 (6)0.0252 (4)0.0400 (5)0.0026 (4)0.0053 (4)0.0042 (3)
Geometric parameters (Å, º) top
C1—C61.379 (5)C9—H9B0.9600
C1—C21.382 (5)C9—H9C0.9600
C1—N11.404 (4)C10—O41.200 (4)
C2—C31.378 (5)C10—O51.317 (4)
C2—H20.9300C11—C121.443 (7)
C3—C41.375 (5)C11—O51.509 (5)
C3—H30.9300C11—H11A0.9700
C4—C51.376 (5)C11—H11B0.9700
C4—S11.760 (3)C12—H12A0.9600
C5—C61.379 (5)C12—H12B0.9600
C5—H50.9300C12—H12C0.9600
C6—H60.9300N1—N21.300 (4)
C7—N21.304 (4)N1—H10.8600
C7—C81.477 (5)N3—S11.607 (4)
C7—C101.488 (5)N3—H3A0.85 (5)
C8—O61.213 (4)N3—H3B0.77 (4)
C8—C91.488 (5)O1—S11.423 (3)
C9—H9A0.9600O2—S11.419 (3)
C6—C1—C2120.3 (3)O4—C10—O5122.4 (4)
C6—C1—N1117.4 (3)O4—C10—C7121.7 (3)
C2—C1—N1122.3 (3)O5—C10—C7115.9 (3)
C3—C2—C1119.5 (3)C12—C11—O5109.3 (4)
C3—C2—H2120.3C12—C11—H11A109.8
C1—C2—H2120.3O5—C11—H11A109.8
C4—C3—C2120.4 (3)C12—C11—H11B109.8
C4—C3—H3119.8O5—C11—H11B109.8
C2—C3—H3119.8H11A—C11—H11B108.3
C3—C4—C5120.0 (3)C11—C12—H12A109.5
C3—C4—S1120.8 (3)C11—C12—H12B109.5
C5—C4—S1119.1 (3)H12A—C12—H12B109.5
C4—C5—C6120.1 (3)C11—C12—H12C109.5
C4—C5—H5119.9H12A—C12—H12C109.5
C6—C5—H5119.9H12B—C12—H12C109.5
C1—C6—C5119.7 (3)N2—N1—C1119.3 (3)
C1—C6—H6120.1N2—N1—H1120.3
C5—C6—H6120.1C1—N1—H1120.3
N2—C7—C8113.7 (3)N1—N2—C7122.7 (3)
N2—C7—C10121.9 (3)S1—N3—H3A111 (3)
C8—C7—C10124.4 (3)S1—N3—H3B115 (3)
O6—C8—C7121.2 (3)H3A—N3—H3B113 (5)
O6—C8—C9120.6 (3)C10—O5—C11116.1 (3)
C7—C8—C9118.1 (3)O2—S1—O1118.86 (18)
C8—C9—H9A109.5O2—S1—N3105.8 (2)
C8—C9—H9B109.5O1—S1—N3107.7 (2)
H9A—C9—H9B109.5O2—S1—C4109.76 (17)
C8—C9—H9C109.5O1—S1—C4107.32 (16)
H9A—C9—H9C109.5N3—S1—C4106.76 (17)
H9B—C9—H9C109.5
C6—C1—C2—C31.5 (6)N2—C7—C10—O5165.3 (4)
N1—C1—C2—C3178.1 (3)C8—C7—C10—O516.2 (6)
C1—C2—C3—C40.6 (6)C6—C1—N1—N2172.9 (4)
C2—C3—C4—C50.9 (6)C2—C1—N1—N27.5 (5)
C2—C3—C4—S1175.3 (3)C1—N1—N2—C7179.7 (3)
C3—C4—C5—C61.5 (6)C8—C7—N2—N1178.4 (3)
S1—C4—C5—C6174.8 (3)C10—C7—N2—N10.2 (6)
C2—C1—C6—C51.0 (6)O4—C10—O5—C114.0 (6)
N1—C1—C6—C5178.7 (4)C7—C10—O5—C11173.1 (3)
C4—C5—C6—C10.5 (7)C12—C11—O5—C1077.1 (5)
N2—C7—C8—O6178.8 (4)C3—C4—S1—O2133.9 (3)
C10—C7—C8—O60.3 (6)C5—C4—S1—O249.9 (4)
N2—C7—C8—C91.0 (5)C3—C4—S1—O13.4 (4)
C10—C7—C8—C9177.5 (4)C5—C4—S1—O1179.6 (3)
N2—C7—C10—O411.8 (6)C3—C4—S1—N3111.9 (3)
C8—C7—C10—O4166.7 (4)C5—C4—S1—N364.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.952.597 (5)131
N3—H3B···O6i0.77 (5)2.33 (4)2.941 (6)137 (4)
N3—H3B···O5i0.77 (5)2.52 (5)3.208 (6)149 (5)
N3—H3A···O4ii0.85 (5)2.21 (5)3.003 (6)154 (4)
Symmetry codes: (i) x, y, z+2; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H15N3O5S
Mr313.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.490 (6), 14.819 (12), 12.689 (10)
β (°) 95.219 (14)
V3)1402.6 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.940, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
11777, 3274, 2177
Rint0.052
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.222, 0.87
No. of reflections3274
No. of parameters200
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.952.597 (5)131.00
N3—H3B···O6i0.77 (5)2.33 (4)2.941 (6)137 (4)
N3—H3B···O5i0.77 (5)2.52 (5)3.208 (6)149 (5)
N3—H3A···O4ii0.85 (5)2.21 (5)3.003 (6)154 (4)
Symmetry codes: (i) x, y, z+2; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

KKU and SU are grateful to the CSIR, New Delhi, for financial support.

References

First citationAbbate, F., Casini, A., Owa, T., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 217–223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBadr, E. E. (2008). J. Disper. Sci. Technol. 29,1143–1149.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol. 48, 47–50.  CrossRef CAS Google Scholar
First citationNovinson, T., Okabe, T., Robins, R. K. & Matthews, T. R. (1976). J. Med. Chem. 19, 517–520.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPrakash, A. & Gambhir, I. R. (1964). J. Indian Chem. Soc. 41, 133–136.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUpadhyay, K. K., Upadhyay, S., Kumar, K. & Prasad, R. (2009). J. Mol. Struct. 927, 60–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, Z., Chen, R., Xing, R., Chen, X., Liu, S., Guo, Z., Ji, X., Wang, L. & Li, P. (2007). Carbohydr. Res. 342, 2390–2395.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds