organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Menthyl 2-oxo-2H-chromene-3-carboxyl­ate

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China, and bCollege of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: xucuilian666@126.com

(Received 16 August 2009; accepted 6 September 2009; online 12 September 2009)

The title compound, C20H24O4, was synthesized from the reaction of 2-oxo-2H-chromene-3-acyl chloride and menthol. The mean plane of the ester group and that of the four essentially planar (maximum deviation 0.0112 Å) C atoms of the chair-form cyclo­hexyl ring form dihedral angles of 43.8 (3) ° and 81.8 (1)°, respectively, with the mean plane of the coumarin ring system. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds connect the mol­ecules into a two-dimensional network.

Related literature

For the applications of coumarin compounds, see: Yu et al. (2003[Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322-345.], 2007[Yu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108-132.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24O4

  • Mr = 328.39

  • Orthorhombic, P 21 21 21

  • a = 11.080 (2) Å

  • b = 12.408 (3) Å

  • c = 13.532 (3) Å

  • V = 1860.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.18 × 0.18 × 0.17 mm

Data collection
  • Rigaku R-AXIS-IV diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi,1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.986, Tmax = 0.986

  • 5812 measured reflections

  • 1943 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.138

  • S = 1.09

  • 1943 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.93 2.43 3.288 (5) 154
C5—H5A⋯O3ii 0.93 2.42 3.276 (5) 152
Symmetry codes: (i) [-x+{\script{5\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: R-AXIS (Rigaku, 1997[Rigaku (1997). R-AXIS. Rigaku Corporation, Tokyo, Japan.]); cell refinement: R-AXIS data reduction: R-AXIS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: TEXSAN (Molecular Structure Corporation & Rigaku (2000[Molecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: TEXSAN.

Supporting information


Comment top

Coumarins are a type of plant-derived compounds, which are of interest mainly because of their excellent bioactivities in many areas (Yu et al., 2003; Yu et al., 2007). Some coumarin derivatives have shown to be potential anti-HIV agents, antibiotics, and antioxidants. We have synthesized the title compound (I) and its crystal structure is reported herein.

The molecular structure of (I) is shown in Fig. 1. The compound is composed of a coumarin core with a menthyloxycarbonyl in 3-position. The dihedral angle between the plane of ester group and the plane of coumarin ring system is 43.8 (3)°. The dihedral angle between the coumarin ring system and the plane defined by four essentially planar carbon atoms (C11/C13/C14/C16) of the chair form cyclohexyl ring is 81.8 (1)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds connect molecules into a two-dimensional network (Fig. 2).

Related literature top

For the applications of coumarin compounds, see: Yu et al. (2003); Yu et al. (2007).

Experimental top

A solution of menthol (0.0072 mol) dissolved in dried methyl dichloride (DCM) (25ml) was added dropwise to a solution of 2-oxo-2H-chromene -3-acyl chloride (0.0072 mol) dissolved in DCM (25 ml) and triethylamine (1 ml) at room temperature. The reaction mixture was stirred for 24 h (mornitored by TLC). The mixture was then neutralized with 5% HCl and washed with saturated NaHCO3 and brine respectively. The organic phase was dried over Na2SO4 and evaporated under the reduced pressure. The resulting residue was purified by column chromatography (EtOAc: petroleum ether) to give the pure compound. Single crystals of the title compound suitable for X-ray diffractions were obtained by slow evaporation of a mixed solvent (ethyl acetate: petroleum ether = 1:1, 10 ml) solution of the title compound (0.035 g).

Refinement top

In the absence of significant anomalous dispersion effects Friedel pairs were merged before refinement. The absolute configuration is based on that of the starting material. All H atoms were placed in caculated positions, with C—H = 0.93 Å, and Uiso(H)=1.2Ueq(C) for aromatic H atoms; C—H = 0.96 Å, and Uiso(H)=1.5 Ueq(C) for methy H atoms. The final difference map had a highest peak at 0.64 Å from atom O2 and a deepest hole at 1.60 Å from atom C3.

Computing details top

Data collection: R-AXIS (Rigaku, 1997); cell refinement: R-AXIS (Rigaku, 1997); data reduction: R-AXIS (Rigaku, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN (Molecular Structure Corporation & Rigaku (2000) and PLATON (Spek, 2009); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation & Rigaku (2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing weak C– H···O hydrogen bonds as dashed lines. Only H atoms involved in H– bonding have been shown.
Menthyl 2-oxo-2H-chromene-3-carboxylate top
Crystal data top
C20H24O4F(000) = 704
Mr = 328.39Dx = 1.173 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 489 reflections
a = 11.080 (2) Åθ = 2.2–25.5°
b = 12.408 (3) ŵ = 0.08 mm1
c = 13.532 (3) ÅT = 291 K
V = 1860.3 (6) Å3Prism, colorless
Z = 40.18 × 0.18 × 0.17 mm
Data collection top
Rigaku R-AXIS-IV
diffractometer
1943 independent reflections
Radiation source: fine-focus sealed tube1654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.2°
Oscillation frames scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
k = 015
Tmin = 0.986, Tmax = 0.986l = 1616
5812 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.172P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1943 reflectionsΔρmax = 0.15 e Å3
218 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (5)
Crystal data top
C20H24O4V = 1860.3 (6) Å3
Mr = 328.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.080 (2) ŵ = 0.08 mm1
b = 12.408 (3) ÅT = 291 K
c = 13.532 (3) Å0.18 × 0.18 × 0.17 mm
Data collection top
Rigaku R-AXIS-IV
diffractometer
1943 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
1654 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.986Rint = 0.063
5812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.09Δρmax = 0.15 e Å3
1943 reflectionsΔρmin = 0.17 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1789 (2)1.01848 (18)0.10921 (18)0.0682 (7)
O21.0992 (3)1.1284 (2)0.2180 (2)0.0863 (8)
O30.9734 (2)1.0101 (2)0.37733 (18)0.0852 (8)
O40.83141 (18)0.92908 (18)0.28562 (15)0.0591 (6)
C11.1825 (3)0.9219 (3)0.0601 (2)0.0593 (8)
C21.2617 (3)0.9135 (3)0.0176 (3)0.0814 (11)
H2A1.31240.97060.03370.098*
C31.2651 (4)0.8204 (4)0.0710 (3)0.0929 (13)
H3A1.31790.81450.12420.111*
C41.1909 (5)0.7341 (4)0.0468 (3)0.0931 (14)
H4A1.19470.67070.08330.112*
C51.1114 (4)0.7426 (3)0.0315 (3)0.0760 (10)
H5A1.06180.68490.04780.091*
C61.1055 (3)0.8379 (2)0.0861 (2)0.0545 (7)
C71.0247 (3)0.8555 (2)0.1674 (2)0.0547 (7)
H7A0.97380.80000.18730.066*
C81.0208 (3)0.9499 (2)0.2151 (2)0.0508 (7)
C91.0994 (3)1.0387 (3)0.1849 (2)0.0611 (8)
C100.9412 (3)0.9684 (3)0.3017 (2)0.0571 (8)
C110.7426 (3)0.9362 (2)0.3663 (2)0.0565 (8)
H11A0.75451.00390.40220.068*
C120.6189 (3)0.9375 (3)0.3173 (2)0.0656 (9)
H12A0.61230.87080.27890.079*
C130.5222 (3)0.9316 (3)0.3989 (3)0.0834 (11)
H13A0.52420.99760.43730.100*
H13B0.44310.92610.36850.100*
C140.5413 (4)0.8365 (3)0.4669 (3)0.0853 (12)
H14A0.47940.83690.51750.102*
H14B0.53270.77040.42930.102*
C150.6634 (4)0.8376 (3)0.5156 (3)0.0755 (10)
H15A0.66900.90330.55550.091*
C160.7619 (3)0.8429 (3)0.4359 (3)0.0668 (9)
H16A0.84010.85020.46750.080*
H16B0.76200.77610.39860.080*
C170.5998 (4)1.0313 (4)0.2444 (3)0.0888 (12)
H17A0.66841.03050.19870.107*
C180.4854 (5)1.0146 (6)0.1819 (4)0.142 (2)
H18A0.48820.94500.15110.213*
H18B0.48111.06940.13200.213*
H18C0.41561.01900.22370.213*
C190.5982 (5)1.1416 (4)0.2928 (4)0.1272 (19)
H19A0.58621.19590.24320.191*
H19B0.67371.15390.32570.191*
H19C0.53361.14470.34000.191*
C200.6831 (6)0.7415 (4)0.5839 (4)0.1226 (19)
H20A0.62090.74010.63320.184*
H20B0.76040.74790.61540.184*
H20C0.68050.67610.54610.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0560 (13)0.0657 (14)0.0828 (15)0.0095 (11)0.0147 (13)0.0056 (12)
O20.103 (2)0.0614 (14)0.0946 (18)0.0128 (13)0.0082 (17)0.0075 (14)
O30.0623 (15)0.122 (2)0.0708 (15)0.0146 (15)0.0000 (13)0.0310 (15)
O40.0420 (11)0.0798 (14)0.0556 (12)0.0051 (10)0.0088 (10)0.0100 (11)
C10.0418 (16)0.073 (2)0.0635 (19)0.0067 (15)0.0045 (15)0.0122 (17)
C20.060 (2)0.097 (3)0.087 (3)0.012 (2)0.026 (2)0.012 (2)
C30.070 (2)0.125 (3)0.084 (3)0.028 (3)0.032 (2)0.011 (3)
C40.095 (3)0.103 (3)0.081 (3)0.029 (3)0.011 (3)0.019 (2)
C50.083 (3)0.070 (2)0.075 (2)0.008 (2)0.010 (2)0.0050 (19)
C60.0466 (16)0.0606 (17)0.0564 (17)0.0036 (14)0.0032 (15)0.0057 (15)
C70.0450 (16)0.0618 (17)0.0572 (16)0.0066 (14)0.0003 (15)0.0057 (14)
C80.0407 (15)0.0583 (17)0.0533 (15)0.0003 (13)0.0028 (14)0.0008 (14)
C90.0510 (18)0.064 (2)0.069 (2)0.0023 (15)0.0058 (16)0.0037 (17)
C100.0445 (17)0.0688 (19)0.0579 (18)0.0017 (15)0.0032 (15)0.0072 (16)
C110.0494 (17)0.0660 (18)0.0541 (17)0.0028 (14)0.0092 (15)0.0053 (15)
C120.0461 (17)0.083 (2)0.068 (2)0.0034 (17)0.0045 (16)0.0060 (18)
C130.0520 (19)0.105 (3)0.093 (3)0.001 (2)0.016 (2)0.008 (2)
C140.075 (3)0.095 (3)0.086 (3)0.019 (2)0.036 (2)0.015 (2)
C150.082 (3)0.079 (2)0.066 (2)0.004 (2)0.020 (2)0.0009 (19)
C160.063 (2)0.074 (2)0.0637 (19)0.0068 (17)0.0091 (17)0.0003 (18)
C170.062 (2)0.113 (3)0.091 (3)0.016 (2)0.002 (2)0.019 (2)
C180.107 (4)0.188 (6)0.130 (4)0.018 (4)0.044 (4)0.027 (4)
C190.134 (4)0.099 (3)0.149 (4)0.025 (3)0.001 (4)0.023 (4)
C200.148 (5)0.121 (4)0.099 (3)0.001 (4)0.038 (4)0.033 (3)
Geometric parameters (Å, º) top
O1—C11.370 (4)C12—C131.540 (5)
O1—C91.374 (4)C12—H12A0.9800
O2—C91.199 (4)C13—C141.512 (6)
O3—C101.201 (4)C13—H13A0.9700
O4—C101.328 (4)C13—H13B0.9700
O4—C111.472 (4)C14—C151.504 (6)
C1—C21.374 (5)C14—H14A0.9700
C1—C61.392 (4)C14—H14B0.9700
C2—C31.363 (6)C15—C201.525 (6)
C2—H2A0.9300C15—C161.535 (5)
C3—C41.389 (6)C15—H15A0.9800
C3—H3A0.9300C16—H16A0.9700
C4—C51.382 (5)C16—H16B0.9700
C4—H4A0.9300C17—C191.517 (7)
C5—C61.396 (5)C17—C181.537 (7)
C5—H5A0.9300C17—H17A0.9800
C6—C71.434 (4)C18—H18A0.9600
C7—C81.338 (4)C18—H18B0.9600
C7—H7A0.9300C18—H18C0.9600
C8—C91.463 (4)C19—H19A0.9600
C8—C101.485 (4)C19—H19B0.9600
C11—C161.508 (5)C19—H19C0.9600
C11—C121.522 (4)C20—H20A0.9600
C11—H11A0.9800C20—H20B0.9600
C12—C171.539 (5)C20—H20C0.9600
C1—O1—C9122.7 (2)C12—C13—H13A109.2
C10—O4—C11117.9 (2)C14—C13—H13B109.2
O1—C1—C2117.1 (3)C12—C13—H13B109.2
O1—C1—C6120.9 (3)H13A—C13—H13B107.9
C2—C1—C6121.9 (3)C15—C14—C13112.6 (3)
C3—C2—C1119.2 (4)C15—C14—H14A109.1
C3—C2—H2A120.4C13—C14—H14A109.1
C1—C2—H2A120.4C15—C14—H14B109.1
C2—C3—C4120.8 (4)C13—C14—H14B109.1
C2—C3—H3A119.6H14A—C14—H14B107.8
C4—C3—H3A119.6C14—C15—C20112.8 (4)
C5—C4—C3119.9 (4)C14—C15—C16109.4 (3)
C5—C4—H4A120.1C20—C15—C16110.9 (4)
C3—C4—H4A120.1C14—C15—H15A107.9
C4—C5—C6120.1 (4)C20—C15—H15A107.9
C4—C5—H5A120.0C16—C15—H15A107.9
C6—C5—H5A120.0C11—C16—C15111.7 (3)
C1—C6—C5118.1 (3)C11—C16—H16A109.3
C1—C6—C7117.6 (3)C15—C16—H16A109.3
C5—C6—C7124.3 (3)C11—C16—H16B109.3
C8—C7—C6121.5 (3)C15—C16—H16B109.3
C8—C7—H7A119.2H16A—C16—H16B107.9
C6—C7—H7A119.2C19—C17—C18110.4 (4)
C7—C8—C9120.4 (3)C19—C17—C12114.0 (4)
C7—C8—C10122.4 (3)C18—C17—C12111.3 (4)
C9—C8—C10117.2 (3)C19—C17—H17A106.9
O2—C9—O1116.6 (3)C18—C17—H17A106.9
O2—C9—C8126.4 (3)C12—C17—H17A106.9
O1—C9—C8116.9 (3)C17—C18—H18A109.5
O3—C10—O4124.8 (3)C17—C18—H18B109.5
O3—C10—C8124.3 (3)H18A—C18—H18B109.5
O4—C10—C8110.9 (3)C17—C18—H18C109.5
O4—C11—C16108.8 (2)H18A—C18—H18C109.5
O4—C11—C12106.2 (2)H18B—C18—H18C109.5
C16—C11—C12114.1 (3)C17—C19—H19A109.5
O4—C11—H11A109.2C17—C19—H19B109.5
C16—C11—H11A109.2H19A—C19—H19B109.5
C12—C11—H11A109.2C17—C19—H19C109.5
C11—C12—C17114.3 (3)H19A—C19—H19C109.5
C11—C12—C13108.3 (3)H19B—C19—H19C109.5
C17—C12—C13113.6 (3)C15—C20—H20A109.5
C11—C12—H12A106.7C15—C20—H20B109.5
C17—C12—H12A106.7H20A—C20—H20B109.5
C13—C12—H12A106.7C15—C20—H20C109.5
C14—C13—C12112.1 (3)H20A—C20—H20C109.5
C14—C13—H13A109.2H20B—C20—H20C109.5
C9—O1—C1—C2176.7 (3)C11—O4—C10—C8177.2 (2)
C9—O1—C1—C61.0 (4)C7—C8—C10—O3133.2 (4)
O1—C1—C2—C3177.6 (3)C9—C8—C10—O344.8 (5)
C6—C1—C2—C30.1 (5)C7—C8—C10—O444.5 (4)
C1—C2—C3—C40.8 (6)C9—C8—C10—O4137.5 (3)
C2—C3—C4—C50.7 (7)C10—O4—C11—C1683.0 (3)
C3—C4—C5—C60.1 (6)C10—O4—C11—C12153.7 (3)
O1—C1—C6—C5178.3 (3)O4—C11—C12—C1758.8 (4)
C2—C1—C6—C50.7 (5)C16—C11—C12—C17178.7 (3)
O1—C1—C6—C71.3 (4)O4—C11—C12—C13173.5 (3)
C2—C1—C6—C7178.9 (3)C16—C11—C12—C1353.6 (4)
C4—C5—C6—C10.8 (5)C11—C12—C13—C1453.9 (4)
C4—C5—C6—C7178.8 (3)C17—C12—C13—C14178.0 (3)
C1—C6—C7—C81.6 (4)C12—C13—C14—C1557.7 (4)
C5—C6—C7—C8178.0 (3)C13—C14—C15—C20179.8 (3)
C6—C7—C8—C90.3 (4)C13—C14—C15—C1655.8 (4)
C6—C7—C8—C10177.6 (3)O4—C11—C16—C15173.5 (3)
C1—O1—C9—O2175.3 (3)C12—C11—C16—C1555.1 (4)
C1—O1—C9—C82.9 (4)C14—C15—C16—C1153.8 (4)
C7—C8—C9—O2175.4 (3)C20—C15—C16—C11178.8 (4)
C10—C8—C9—O26.6 (5)C11—C12—C17—C1966.3 (5)
C7—C8—C9—O12.5 (4)C13—C12—C17—C1958.5 (5)
C10—C8—C9—O1175.5 (2)C11—C12—C17—C18167.9 (4)
C11—O4—C10—O30.5 (5)C13—C12—C17—C1867.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.433.288 (5)154
C5—H5A···O3ii0.932.423.276 (5)152
Symmetry codes: (i) x+5/2, y+2, z1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H24O4
Mr328.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)11.080 (2), 12.408 (3), 13.532 (3)
V3)1860.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.18 × 0.17
Data collection
DiffractometerRigaku R-AXIS-IV
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi,1995)
Tmin, Tmax0.986, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5812, 1943, 1654
Rint0.063
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.138, 1.09
No. of reflections1943
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: R-AXIS (Rigaku, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation & Rigaku (2000) and PLATON (Spek, 2009), TEXSAN (Molecular Structure Corporation & Rigaku (2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.433.288 (5)154
C5—H5A···O3ii0.932.423.276 (5)152
Symmetry codes: (i) x+5/2, y+2, z1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province (No. 2009 A150012).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1997). R-AXIS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds