organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1H-Imidazo[4,5-f][1,10]phenanthrolin-7-ium perchlorate monohydrate

aDepartment of Applied Engineering, Zhejiang Economic and Trade Polytechnic, 310018 Hangzhou, People's Republic of China
*Correspondence e-mail: zjssm01@126.com

(Received 23 August 2009; accepted 28 August 2009; online 5 September 2009)

In the title crystal structure, C13H9N4+·ClO4·H2O, cations, anions and water mol­ecules are linked through inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming layers parallel to (001). In addition, there are weak ππ stacking inter­actions between the layers, involving the cations and with centroid–centroid distances in the range 3.584 (2)–3.662 (2) Å, forming a three-dimensional network.

Related literature

For background to 1H-imidazo[4,5-f][1,10]-phenanthroline and its use as a mol­ecular building block, see: Xiong et al. (1999[Xiong, Y., He, X. F., Zhou, X. H., Wu, J. Z., Chen, X. M., Ji, L. N., Li, R. H., Zhou, J. Y. & Yu, K. B. (1999). J. Chem. Soc. Dalton Trans. pp. 19-24.]); Yu et al. (2009[Yu, J. (2009). Acta Cryst. E65, m618.]); Liu et al. (2009[Liu, J. Q., Zhang, Y. N., Wang, Y. Y., Jin, J. C., Lermontova, E. K. & Shi, Q. Z. (2009). Dalton Trans. pp. 5365-5378.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N4+·ClO4·H2O

  • Mr = 338.71

  • Monoclinic, P 21 /c

  • a = 11.401 (2) Å

  • b = 18.475 (3) Å

  • c = 6.7163 (13) Å

  • β = 90.179 (3)°

  • V = 1414.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.30 × 0.26 × 0.17 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.950

  • 7051 measured reflections

  • 2534 independent reflections

  • 1734 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.197

  • S = 1.01

  • 2534 reflections

  • 208 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1Wi 0.86 1.90 2.713 (4) 156
N3—H3A⋯O3ii 0.86 1.99 2.825 (4) 162
O1W—H1WB⋯N4 0.84 2.02 2.852 (4) 177
O1W—H1WA⋯O2 0.84 2.25 3.018 (5) 154
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1H-imidazo[4,5-f][1,10]-phenanthroline (IP) is an important derivative of 1,10-phenanthroline that has been used to recognize the secondary structure of DNA in an Ru(II) complex (Xiong et al., 1999). IP is a good molecular building block and has been used to construct some interesting structures (Yu et al., 2009, Liu et al., 2009). In an attempt to form a Zn(II) complex with IP, we adventitiously formed the title compound (I) and its crystal structure is determined herein.

The asymmetric unit of (I) is shown in Fig 1. In the crystal structure N-H···O, O-H···N and O-H···O hydrogen bonds link cations, water molecules and perchlorate anions into a 2-D network (Fig. 2). Details of the hydrogen-bonding geometry are given in Table 1. In addition, there are weak ππ stacking interactions between layers, involving cations with centroid to centroid distances in the range 3.584 (2)-3.662 (2)Å forming a three-dimensional network.

Related literature top

For background to 1H-imidazo[4,5-f][1,10]-phenanthroline and its use as a molecular building block, see: Xiong et al. (1999); Yu et al. (2009); Liu et al. (2009).

Experimental top

IP (0.23 mg,0.1 mmol), Zn(ClO4)2 (0.27 mg, 0.1 mmol), were dissolved in methanol. The mixture was heated and stirred for ten hours under reflux. The resulting solid was then filtered off to give a pure solution which was treated with diethyl ether in a closed vessel. Five weeks later, single crystals were obtained.

Refinement top

All H atoms were visible in difference Fourier maps but were subsequently placed in calculated positions treated as riding with C—H = 0.93, N—H == 0.86Å and with Uiso(H) = 1.2Ueq(C,N). The H atoms of the water molecules were included in the subsequent refinement with O-H = 0.84Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipdoids drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I). Hydrogen bonds are drawn as dashed lines and ππ stacking interactions are denoted by dashed lines along with labels (A) and (B).
1H-Imidazo[4,5-f][1,10]phenanthrolin-7-ium perchlorate monohydrate top
Crystal data top
C13H9N4+·ClO4·H2OF(000) = 696
Mr = 338.71Dx = 1.590 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2521 reflections
a = 11.401 (2) Åθ = 1.8–25.2°
b = 18.475 (3) ŵ = 0.30 mm1
c = 6.7163 (13) ÅT = 298 K
β = 90.179 (3)°Block, colorless
V = 1414.7 (4) Å30.30 × 0.26 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2534 independent reflections
Radiation source: fine-focus sealed tube1734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1311
Tmin = 0.914, Tmax = 0.950k = 2122
7051 measured reflectionsl = 78
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1261P)2 + 0.1912P]
where P = (Fo2 + 2Fc2)/3
2534 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.39 e Å3
Crystal data top
C13H9N4+·ClO4·H2OV = 1414.7 (4) Å3
Mr = 338.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.401 (2) ŵ = 0.30 mm1
b = 18.475 (3) ÅT = 298 K
c = 6.7163 (13) Å0.30 × 0.26 × 0.17 mm
β = 90.179 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
2534 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1734 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.950Rint = 0.031
7051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0573 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
2534 reflectionsΔρmin = 0.39 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7565 (2)0.41426 (15)0.3687 (4)0.0563 (7)
N20.5235 (2)0.38399 (13)0.3439 (4)0.0494 (7)
H2A0.55100.42730.33900.059*
N30.8115 (3)0.14741 (15)0.3782 (4)0.0539 (7)
H3A0.88550.13880.38320.065*
N40.6190 (3)0.12600 (14)0.3669 (4)0.0537 (7)
C10.4079 (3)0.37511 (19)0.3383 (5)0.0583 (9)
H10.35900.41530.33010.070*
C20.3602 (3)0.30690 (19)0.3445 (5)0.0577 (9)
H20.27920.30080.34350.069*
C30.4328 (3)0.24803 (18)0.3521 (4)0.0508 (8)
H30.40110.20160.35270.061*
C40.5552 (2)0.25749 (16)0.3589 (4)0.0423 (7)
C50.5997 (2)0.32858 (16)0.3569 (4)0.0424 (7)
C60.7246 (3)0.34396 (16)0.3670 (4)0.0437 (7)
C70.8053 (3)0.28627 (17)0.3736 (4)0.0463 (7)
C80.9257 (3)0.3041 (2)0.3816 (5)0.0575 (9)
H80.98260.26810.38590.069*
C90.9563 (3)0.3750 (2)0.3827 (5)0.0676 (10)
H91.03500.38800.38830.081*
C100.8704 (3)0.4282 (2)0.3753 (5)0.0656 (10)
H100.89420.47630.37510.079*
C110.7577 (3)0.21528 (16)0.3725 (4)0.0462 (7)
C120.6393 (3)0.20018 (16)0.3648 (4)0.0451 (7)
C130.7259 (3)0.09872 (19)0.3745 (5)0.0584 (9)
H130.74020.04920.37700.070*
Cl10.15290 (7)0.11627 (5)0.40411 (14)0.0643 (4)
O10.2077 (4)0.07296 (19)0.5458 (6)0.1414 (17)
O20.2199 (3)0.1137 (2)0.2286 (6)0.1356 (15)
O30.0402 (2)0.08894 (19)0.3635 (5)0.0990 (10)
O40.1451 (3)0.18729 (16)0.4828 (6)0.1099 (12)
O1W0.4428 (2)0.02582 (13)0.2434 (5)0.0871 (9)
H1WB0.49340.05640.27710.131*
H1WA0.37550.04090.27130.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0558 (17)0.0523 (17)0.0608 (16)0.0063 (13)0.0055 (13)0.0023 (12)
N20.0472 (15)0.0436 (15)0.0572 (16)0.0054 (11)0.0031 (12)0.0011 (11)
N30.0536 (16)0.0575 (17)0.0506 (15)0.0156 (14)0.0007 (12)0.0021 (12)
N40.0655 (18)0.0469 (16)0.0488 (15)0.0036 (13)0.0019 (13)0.0006 (11)
C10.050 (2)0.064 (2)0.061 (2)0.0124 (16)0.0055 (15)0.0016 (15)
C20.0421 (17)0.069 (2)0.062 (2)0.0021 (16)0.0014 (15)0.0016 (16)
C30.0482 (18)0.057 (2)0.0470 (17)0.0054 (15)0.0012 (13)0.0004 (14)
C40.0434 (17)0.0471 (17)0.0364 (15)0.0003 (13)0.0031 (12)0.0003 (12)
C50.0421 (16)0.0479 (17)0.0372 (15)0.0035 (13)0.0024 (12)0.0004 (12)
C60.0469 (17)0.0445 (17)0.0396 (15)0.0030 (13)0.0012 (12)0.0032 (11)
C70.0434 (16)0.057 (2)0.0381 (15)0.0013 (14)0.0004 (12)0.0020 (12)
C80.0431 (18)0.071 (2)0.0581 (19)0.0031 (16)0.0005 (14)0.0023 (16)
C90.044 (2)0.086 (3)0.074 (2)0.0140 (18)0.0041 (17)0.0049 (19)
C100.062 (2)0.059 (2)0.076 (2)0.0161 (18)0.0063 (18)0.0054 (17)
C110.0507 (18)0.0493 (19)0.0386 (15)0.0098 (14)0.0016 (13)0.0023 (12)
C120.0511 (18)0.0476 (18)0.0366 (15)0.0031 (14)0.0033 (12)0.0001 (12)
C130.078 (2)0.0406 (18)0.0570 (19)0.0052 (18)0.0009 (17)0.0016 (14)
Cl10.0453 (5)0.0575 (6)0.0902 (7)0.0079 (4)0.0048 (4)0.0043 (4)
O10.157 (4)0.089 (2)0.178 (4)0.033 (2)0.096 (3)0.005 (2)
O20.100 (3)0.167 (4)0.140 (3)0.013 (2)0.059 (2)0.016 (3)
O30.0470 (15)0.117 (2)0.133 (3)0.0055 (15)0.0056 (16)0.028 (2)
O40.107 (3)0.0571 (18)0.166 (3)0.0161 (16)0.005 (2)0.0134 (19)
O1W0.0592 (16)0.0560 (16)0.146 (3)0.0021 (12)0.0052 (16)0.0208 (15)
Geometric parameters (Å, º) top
N1—C101.324 (4)C5—C61.454 (4)
N1—C61.349 (4)C6—C71.408 (4)
N2—C11.329 (4)C7—C81.413 (4)
N2—C51.345 (4)C7—C111.419 (4)
N2—H2A0.8600C8—C91.355 (5)
N3—C131.327 (4)C8—H80.9300
N3—C111.396 (4)C9—C101.388 (5)
N3—H3A0.8600C9—H90.9300
N4—C131.320 (4)C10—H100.9300
N4—C121.390 (4)C11—C121.379 (4)
C1—C21.373 (5)C13—H130.9300
C1—H10.9300Cl1—O11.390 (3)
C2—C31.367 (5)Cl1—O31.406 (3)
C2—H20.9300Cl1—O21.407 (4)
C3—C41.408 (4)Cl1—O41.417 (3)
C3—H30.9300O1W—H1WB0.8379
C4—C51.408 (4)O1W—H1WA0.8377
C4—C121.429 (4)
C10—N1—C6116.9 (3)C6—C7—C11116.7 (3)
C1—N2—C5123.2 (3)C8—C7—C11126.0 (3)
C1—N2—H2A118.4C9—C8—C7118.4 (3)
C5—N2—H2A118.4C9—C8—H8120.8
C13—N3—C11106.6 (3)C7—C8—H8120.8
C13—N3—H3A126.7C8—C9—C10120.2 (3)
C11—N3—H3A126.7C8—C9—H9119.9
C13—N4—C12102.9 (3)C10—C9—H9119.9
N2—C1—C2120.3 (3)N1—C10—C9123.7 (3)
N2—C1—H1119.8N1—C10—H10118.1
C2—C1—H1119.8C9—C10—H10118.1
C3—C2—C1119.4 (3)C12—C11—N3104.4 (3)
C3—C2—H2120.3C12—C11—C7124.2 (3)
C1—C2—H2120.3N3—C11—C7131.4 (3)
C2—C3—C4120.2 (3)C11—C12—N4111.2 (3)
C2—C3—H3119.9C11—C12—C4120.5 (3)
C4—C3—H3119.9N4—C12—C4128.3 (3)
C3—C4—C5118.2 (3)N4—C13—N3114.9 (3)
C3—C4—C12125.0 (3)N4—C13—H13122.6
C5—C4—C12116.8 (3)N3—C13—H13122.6
N2—C5—C4118.6 (3)O1—Cl1—O3109.5 (2)
N2—C5—C6119.1 (3)O1—Cl1—O2108.1 (3)
C4—C5—C6122.3 (3)O3—Cl1—O2108.9 (2)
N1—C6—C7123.5 (3)O1—Cl1—O4107.8 (2)
N1—C6—C5116.9 (3)O3—Cl1—O4110.2 (2)
C7—C6—C5119.5 (3)O2—Cl1—O4112.2 (2)
C6—C7—C8117.3 (3)H1WB—O1W—H1WA110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1Wi0.861.902.713 (4)156
N3—H3A···O3ii0.861.992.825 (4)162
O1W—H1WB···N40.842.022.852 (4)177
O1W—H1WA···O20.842.253.018 (5)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H9N4+·ClO4·H2O
Mr338.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.401 (2), 18.475 (3), 6.7163 (13)
β (°) 90.179 (3)
V3)1414.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.26 × 0.17
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.914, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
7051, 2534, 1734
Rint0.031
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.197, 1.01
No. of reflections2534
No. of parameters208
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1Wi0.861.902.713 (4)156.1
N3—H3A···O3ii0.861.992.825 (4)162.0
O1W—H1WB···N40.842.022.852 (4)177.1
O1W—H1WA···O20.842.253.018 (5)153.5
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The author is grateful to the Zhejiang Economic and Trade Polytechnic for financial support.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, J. Q., Zhang, Y. N., Wang, Y. Y., Jin, J. C., Lermontova, E. K. & Shi, Q. Z. (2009). Dalton Trans. pp. 5365–5378.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, Y., He, X. F., Zhou, X. H., Wu, J. Z., Chen, X. M., Ji, L. N., Li, R. H., Zhou, J. Y. & Yu, K. B. (1999). J. Chem. Soc. Dalton Trans. pp. 19–24.  Web of Science CSD CrossRef Google Scholar
First citationYu, J. (2009). Acta Cryst. E65, m618.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds