organic compounds
Diethyl [(5-chloro-2-hydroxyanilino)(4-chlorophenyl)methyl]phosphonate
aDepartment of Physics, S.V. University, Tirupati 517 502, India, bDepartment of Chemistry, S.V. University, Tirupati 517 502, India, and cCentre of Material Characterization, National Chemical Laboratory, Pune 411 008, India
*Correspondence e-mail: profkrishnaiah.m@gmail.com
In the title compound, C17H20Cl2NO4P, the P atom is bonded in a distorted tetrahedral environment. The dihedral angle between the two benzene rings is 80.5 (1)°. In the intermolecular O—H⋯O and N—H⋯O hydrogen bonds link pairs of molecules into centrosymmetric dimers. These dimers, are in turn, linked by weak intermolecular C—H⋯O hydrogen bonds into one-dimensional chains along [010]. Additional stabilization is provided by very weak C—H⋯Cl interactions.
Related literature
For applications of α-aminophosphonates, see: Allen et al. (1989); Baylis et al. (1984); Fields (1999); Hirschmann et al. (1994); Kafarski & Lejczak (1991); Miliszkiewicz et al. (1992). For the antibacterial activity of the title compound, see: Syam Prasad et al. (2007). For related structures, see: Boehlow et al. (1997); Yang et al. (2005); Sawka-Dobrowolska & Kowalik (1985); Sawka-Dobrowolska & Rułko (1987); Sanders et al. (1996); Ezra & Collin (1973). For P—C bond lengths in related structures, see: Rużić-Toroš et al. (1978).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker 2001); cell SAINT (Bruker 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536809037039/lh2891sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809037039/lh2891Isup2.hkl
To a stirred solution of 2-amino-4-chlorophenol (0.72 g, 0.005 mol), 4-chloro benzaldehyde (0.005 mol) in anhydrous toluene (15 ml) was added dropwise. Stirring was continued at room temperature for lh. Then diethylphosphite (0.7 g, 0.005 mol) in anhydrous toulene (15 ml) was added dropwise. Stirring was continued at room temperature for another 0.5 h, later the mixture was heated under reflux for 4–6 h. After completion of the reaction (monitored by TLC) the solvent was removed under reduced pressure. The resulting residue was purified by
on silica gel using petroleum ether-ethyl acetate (8:2) as Colorless, prism shaped single crystals suitable for diffraction studies were grown by slow evaporation of a methanol solution of the title compound.All hydrogen atoms were placed in calculated positions with C-H = 0.93-0.97Å; N-H = 0.86Å and O-H = 0.82Å. They were included in the
in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl,O)Data collection: SMART (Bruker 2001); cell
SAINT (Bruker 2002); data reduction: SAINT (Bruker 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEP-II (Zsolnai, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: 'enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995)'.C17H20Cl2NO4P | Z = 2 |
Mr = 404.21 | F(000) = 420 |
Triclinic, P1 | Dx = 1.391 Mg m−3 Dm = 1.390 Mg m−3 Dm measured by not measured |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.790 (3) Å | Cell parameters from 4863 reflections |
b = 9.297 (4) Å | θ = 2.3–28.4° |
c = 14.372 (6) Å | µ = 0.44 mm−1 |
α = 82.817 (6)° | T = 294 K |
β = 80.842 (6)° | Prism, colorless |
γ = 70.323 (6)° | 0.25 × 0.25 × 0.13 mm |
V = 964.7 (7) Å3 |
Siemens SMART CCD area-detector diffractometer | 4863 independent reflections |
Radiation source: fine-focus sealed tube | 3635 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 28.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.896, Tmax = 0.944 | k = −12→12 |
10997 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0937P)2 + 0.273P] where P = (Fo2 + 2Fc2)/3 |
4863 reflections | (Δ/σ)max < 0.001 |
226 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C17H20Cl2NO4P | γ = 70.323 (6)° |
Mr = 404.21 | V = 964.7 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.790 (3) Å | Mo Kα radiation |
b = 9.297 (4) Å | µ = 0.44 mm−1 |
c = 14.372 (6) Å | T = 294 K |
α = 82.817 (6)° | 0.25 × 0.25 × 0.13 mm |
β = 80.842 (6)° |
Siemens SMART CCD area-detector diffractometer | 4863 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3635 reflections with I > 2σ(I) |
Tmin = 0.896, Tmax = 0.944 | Rint = 0.017 |
10997 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.56 e Å−3 |
4863 reflections | Δρmin = −0.34 e Å−3 |
226 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.39158 (8) | 0.81933 (6) | 0.17033 (4) | 0.05033 (18) | |
Cl3 | 0.76222 (12) | 0.10544 (8) | 0.42621 (5) | 0.0856 (3) | |
Cl2 | −0.32728 (10) | 0.63628 (13) | 0.43963 (6) | 0.0973 (3) | |
O8 | 0.6784 (2) | 0.33466 (17) | 0.03123 (10) | 0.0610 (4) | |
H8 | 0.7402 | 0.2713 | −0.0061 | 0.092* | |
C15 | 0.4115 (3) | 0.6327 (2) | 0.23264 (13) | 0.0462 (4) | |
H15 | 0.4946 | 0.6167 | 0.2803 | 0.055* | |
O5 | 0.2676 (2) | 0.86066 (17) | 0.09700 (11) | 0.0619 (4) | |
C16 | 0.2269 (3) | 0.6284 (2) | 0.28494 (13) | 0.0449 (4) | |
N4 | 0.4997 (3) | 0.51803 (19) | 0.16550 (12) | 0.0555 (5) | |
H4 | 0.4846 | 0.5413 | 0.1069 | 0.067* | |
C10 | 0.6279 (3) | 0.3174 (2) | 0.28709 (14) | 0.0506 (5) | |
H10 | 0.5652 | 0.3800 | 0.3356 | 0.061* | |
C14 | 0.7033 (3) | 0.2733 (2) | 0.12175 (14) | 0.0474 (4) | |
O7 | 0.5926 (3) | 0.8172 (2) | 0.13357 (14) | 0.0790 (5) | |
C9 | 0.6079 (2) | 0.3719 (2) | 0.19319 (14) | 0.0435 (4) | |
O6 | 0.3313 (3) | 0.92357 (18) | 0.25403 (11) | 0.0662 (5) | |
C11 | 0.7415 (3) | 0.1695 (2) | 0.30794 (15) | 0.0550 (5) | |
C13 | 0.8153 (3) | 0.1274 (3) | 0.14481 (17) | 0.0600 (6) | |
H13 | 0.8783 | 0.0637 | 0.0969 | 0.072* | |
C12 | 0.8360 (3) | 0.0736 (3) | 0.23795 (18) | 0.0634 (6) | |
H12 | 0.9121 | −0.0251 | 0.2529 | 0.076* | |
C21 | 0.1714 (3) | 0.6774 (3) | 0.37545 (15) | 0.0567 (5) | |
H21 | 0.2495 | 0.7088 | 0.4048 | 0.068* | |
C19 | −0.1119 (3) | 0.6310 (3) | 0.38023 (17) | 0.0622 (6) | |
C20 | 0.0014 (3) | 0.6800 (3) | 0.42263 (16) | 0.0646 (6) | |
H20 | −0.0357 | 0.7150 | 0.4828 | 0.078* | |
C17 | 0.1099 (3) | 0.5794 (3) | 0.24381 (17) | 0.0646 (6) | |
H17 | 0.1460 | 0.5448 | 0.1835 | 0.078* | |
C18 | −0.0595 (4) | 0.5810 (4) | 0.2904 (2) | 0.0754 (7) | |
H18 | −0.1376 | 0.5487 | 0.2616 | 0.091* | |
C22 | 0.3166 (5) | 1.0826 (3) | 0.2469 (2) | 0.0840 (9) | |
H22A | 0.2271 | 1.1403 | 0.2048 | 0.101* | |
H22B | 0.4343 | 1.0945 | 0.2209 | 0.101* | |
C24 | 0.6719 (5) | 0.8128 (4) | 0.0351 (2) | 0.0952 (10) | |
H24A | 0.5890 | 0.7947 | −0.0023 | 0.114* | |
H24B | 0.6872 | 0.9110 | 0.0124 | 0.114* | |
C23 | 0.2602 (5) | 1.1411 (4) | 0.3403 (2) | 0.0903 (10) | |
H23A | 0.2494 | 1.2477 | 0.3353 | 0.135* | |
H23B | 0.3504 | 1.0850 | 0.3813 | 0.135* | |
H23C | 0.1437 | 1.1292 | 0.3657 | 0.135* | |
C25 | 0.8425 (6) | 0.6970 (6) | 0.0239 (3) | 0.148 (2) | |
H25A | 0.8922 | 0.6963 | −0.0417 | 0.222* | |
H25B | 0.8271 | 0.5996 | 0.0455 | 0.222* | |
H25C | 0.9252 | 0.7158 | 0.0601 | 0.222* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0602 (3) | 0.0418 (3) | 0.0429 (3) | −0.0107 (2) | 0.0019 (2) | −0.0079 (2) |
Cl3 | 0.1068 (6) | 0.0725 (4) | 0.0536 (4) | 0.0006 (4) | −0.0165 (3) | 0.0075 (3) |
Cl2 | 0.0603 (4) | 0.1562 (8) | 0.0703 (5) | −0.0335 (4) | 0.0017 (3) | −0.0068 (5) |
O8 | 0.0729 (10) | 0.0504 (8) | 0.0449 (8) | 0.0014 (7) | −0.0067 (7) | −0.0104 (6) |
C15 | 0.0516 (10) | 0.0384 (9) | 0.0407 (9) | −0.0028 (8) | −0.0057 (8) | −0.0070 (7) |
O5 | 0.0798 (11) | 0.0474 (8) | 0.0463 (8) | −0.0043 (7) | −0.0086 (7) | −0.0038 (6) |
C16 | 0.0524 (10) | 0.0355 (8) | 0.0401 (9) | −0.0045 (7) | −0.0078 (8) | −0.0038 (7) |
N4 | 0.0666 (11) | 0.0432 (9) | 0.0396 (8) | 0.0062 (8) | −0.0066 (8) | −0.0081 (7) |
C10 | 0.0520 (11) | 0.0473 (10) | 0.0449 (10) | −0.0069 (8) | −0.0017 (8) | −0.0071 (8) |
C14 | 0.0460 (10) | 0.0457 (10) | 0.0455 (10) | −0.0072 (8) | −0.0037 (8) | −0.0088 (8) |
O7 | 0.0733 (11) | 0.0911 (13) | 0.0722 (12) | −0.0324 (10) | 0.0114 (9) | −0.0145 (10) |
C9 | 0.0404 (9) | 0.0386 (9) | 0.0463 (10) | −0.0062 (7) | −0.0030 (7) | −0.0062 (7) |
O6 | 0.0935 (12) | 0.0494 (8) | 0.0552 (9) | −0.0257 (8) | 0.0070 (8) | −0.0162 (7) |
C11 | 0.0576 (12) | 0.0496 (11) | 0.0498 (11) | −0.0071 (9) | −0.0092 (9) | −0.0002 (9) |
C13 | 0.0604 (12) | 0.0482 (11) | 0.0565 (12) | 0.0038 (9) | −0.0036 (10) | −0.0140 (9) |
C12 | 0.0623 (13) | 0.0452 (11) | 0.0655 (14) | 0.0060 (9) | −0.0101 (11) | −0.0042 (10) |
C21 | 0.0623 (13) | 0.0642 (13) | 0.0442 (11) | −0.0187 (10) | −0.0053 (9) | −0.0129 (9) |
C19 | 0.0513 (11) | 0.0742 (15) | 0.0531 (12) | −0.0124 (10) | −0.0051 (9) | 0.0004 (11) |
C20 | 0.0677 (14) | 0.0764 (15) | 0.0436 (11) | −0.0162 (12) | 0.0013 (10) | −0.0124 (10) |
C17 | 0.0645 (13) | 0.0807 (16) | 0.0500 (12) | −0.0205 (12) | −0.0052 (10) | −0.0212 (11) |
C18 | 0.0658 (15) | 0.103 (2) | 0.0634 (15) | −0.0306 (14) | −0.0073 (12) | −0.0221 (14) |
C22 | 0.120 (2) | 0.0619 (15) | 0.0744 (17) | −0.0419 (16) | 0.0128 (16) | −0.0183 (13) |
C24 | 0.084 (2) | 0.097 (2) | 0.079 (2) | −0.0163 (17) | 0.0210 (16) | 0.0078 (17) |
C23 | 0.119 (3) | 0.0762 (18) | 0.083 (2) | −0.0425 (18) | 0.0148 (18) | −0.0354 (15) |
C25 | 0.090 (3) | 0.164 (4) | 0.123 (4) | 0.017 (3) | 0.034 (2) | 0.008 (3) |
P1—O5 | 1.4712 (17) | C13—C12 | 1.384 (3) |
P1—O6 | 1.5531 (16) | C13—H13 | 0.9300 |
P1—O7 | 1.565 (2) | C12—H12 | 0.9300 |
P1—C15 | 1.819 (2) | C21—C20 | 1.382 (3) |
Cl3—C11 | 1.743 (2) | C21—H21 | 0.9300 |
Cl2—C19 | 1.745 (3) | C19—C20 | 1.367 (4) |
O8—C14 | 1.370 (2) | C19—C18 | 1.380 (4) |
O8—H8 | 0.8200 | C20—H20 | 0.9300 |
C15—N4 | 1.447 (2) | C17—C18 | 1.377 (4) |
C15—C16 | 1.523 (3) | C17—H17 | 0.9300 |
C15—H15 | 0.9800 | C18—H18 | 0.9300 |
C16—C17 | 1.381 (3) | C22—C23 | 1.457 (4) |
C16—C21 | 1.387 (3) | C22—H22A | 0.9700 |
N4—C9 | 1.384 (2) | C22—H22B | 0.9700 |
N4—H4 | 0.8600 | C24—C25 | 1.402 (5) |
C10—C11 | 1.388 (3) | C24—H24A | 0.9700 |
C10—C9 | 1.394 (3) | C24—H24B | 0.9700 |
C10—H10 | 0.9300 | C23—H23A | 0.9600 |
C14—C13 | 1.376 (3) | C23—H23B | 0.9600 |
C14—C9 | 1.407 (3) | C23—H23C | 0.9600 |
O7—C24 | 1.450 (4) | C25—H25A | 0.9600 |
O6—C22 | 1.436 (3) | C25—H25B | 0.9600 |
C11—C12 | 1.377 (3) | C25—H25C | 0.9600 |
O5—P1—O6 | 115.79 (10) | C20—C21—C16 | 120.8 (2) |
O5—P1—O7 | 114.61 (11) | C20—C21—H21 | 119.6 |
O6—P1—O7 | 104.38 (10) | C16—C21—H21 | 119.6 |
O5—P1—C15 | 113.51 (10) | C20—C19—C18 | 120.8 (2) |
O6—P1—C15 | 101.05 (9) | C20—C19—Cl2 | 119.40 (19) |
O7—P1—C15 | 106.08 (11) | C18—C19—Cl2 | 119.8 (2) |
C14—O8—H8 | 109.5 | C19—C20—C21 | 119.6 (2) |
N4—C15—C16 | 115.71 (17) | C19—C20—H20 | 120.2 |
N4—C15—P1 | 107.67 (14) | C21—C20—H20 | 120.2 |
C16—C15—P1 | 111.24 (12) | C18—C17—C16 | 121.3 (2) |
N4—C15—H15 | 107.3 | C18—C17—H17 | 119.4 |
C16—C15—H15 | 107.3 | C16—C17—H17 | 119.4 |
P1—C15—H15 | 107.3 | C17—C18—C19 | 119.2 (2) |
C17—C16—C21 | 118.4 (2) | C17—C18—H18 | 120.4 |
C17—C16—C15 | 121.66 (18) | C19—C18—H18 | 120.4 |
C21—C16—C15 | 119.92 (18) | O6—C22—C23 | 109.6 (2) |
C9—N4—C15 | 121.70 (16) | O6—C22—H22A | 109.8 |
C9—N4—H4 | 119.1 | C23—C22—H22A | 109.8 |
C15—N4—H4 | 119.1 | O6—C22—H22B | 109.8 |
C11—C10—C9 | 119.82 (18) | C23—C22—H22B | 109.8 |
C11—C10—H10 | 120.1 | H22A—C22—H22B | 108.2 |
C9—C10—H10 | 120.1 | C25—C24—O7 | 111.0 (3) |
O8—C14—C13 | 124.40 (18) | C25—C24—H24A | 109.4 |
O8—C14—C9 | 115.33 (17) | O7—C24—H24A | 109.4 |
C13—C14—C9 | 120.25 (19) | C25—C24—H24B | 109.4 |
C24—O7—P1 | 124.7 (2) | O7—C24—H24B | 109.4 |
N4—C9—C10 | 123.96 (17) | H24A—C24—H24B | 108.0 |
N4—C9—C14 | 117.57 (17) | C22—C23—H23A | 109.5 |
C10—C9—C14 | 118.47 (17) | C22—C23—H23B | 109.5 |
C22—O6—P1 | 125.27 (17) | H23A—C23—H23B | 109.5 |
C12—C11—C10 | 121.7 (2) | C22—C23—H23C | 109.5 |
C12—C11—Cl3 | 119.93 (17) | H23A—C23—H23C | 109.5 |
C10—C11—Cl3 | 118.42 (17) | H23B—C23—H23C | 109.5 |
C14—C13—C12 | 121.27 (19) | C24—C25—H25A | 109.5 |
C14—C13—H13 | 119.4 | C24—C25—H25B | 109.5 |
C12—C13—H13 | 119.4 | H25A—C25—H25B | 109.5 |
C11—C12—C13 | 118.53 (19) | C24—C25—H25C | 109.5 |
C11—C12—H12 | 120.7 | H25A—C25—H25C | 109.5 |
C13—C12—H12 | 120.7 | H25B—C25—H25C | 109.5 |
O5—P1—C15—N4 | 65.76 (17) | O5—P1—O6—C22 | −65.0 (3) |
O6—P1—C15—N4 | −169.61 (14) | O7—P1—O6—C22 | 62.0 (3) |
O7—P1—C15—N4 | −60.97 (16) | C15—P1—O6—C22 | 172.0 (2) |
O5—P1—C15—C16 | −62.00 (16) | C9—C10—C11—C12 | −0.2 (4) |
O6—P1—C15—C16 | 62.62 (15) | C9—C10—C11—Cl3 | −179.79 (16) |
O7—P1—C15—C16 | 171.27 (13) | O8—C14—C13—C12 | 179.0 (2) |
N4—C15—C16—C17 | −30.9 (3) | C9—C14—C13—C12 | 0.5 (4) |
P1—C15—C16—C17 | 92.4 (2) | C10—C11—C12—C13 | −0.2 (4) |
N4—C15—C16—C21 | 150.44 (18) | Cl3—C11—C12—C13 | 179.4 (2) |
P1—C15—C16—C21 | −86.3 (2) | C14—C13—C12—C11 | 0.1 (4) |
C16—C15—N4—C9 | −84.7 (2) | C17—C16—C21—C20 | −1.3 (3) |
P1—C15—N4—C9 | 150.18 (17) | C15—C16—C21—C20 | 177.43 (19) |
O5—P1—O7—C24 | −16.7 (3) | C18—C19—C20—C21 | −1.0 (4) |
O6—P1—O7—C24 | −144.4 (2) | Cl2—C19—C20—C21 | −179.39 (19) |
C15—P1—O7—C24 | 109.4 (2) | C16—C21—C20—C19 | 1.3 (4) |
C15—N4—C9—C10 | 6.3 (3) | C21—C16—C17—C18 | 1.0 (4) |
C15—N4—C9—C14 | −173.55 (18) | C15—C16—C17—C18 | −177.7 (2) |
C11—C10—C9—N4 | −179.1 (2) | C16—C17—C18—C19 | −0.7 (4) |
C11—C10—C9—C14 | 0.7 (3) | C20—C19—C18—C17 | 0.7 (4) |
O8—C14—C9—N4 | 0.3 (3) | Cl2—C19—C18—C17 | 179.1 (2) |
C13—C14—C9—N4 | 179.0 (2) | P1—O6—C22—C23 | −178.8 (2) |
O8—C14—C9—C10 | −179.55 (19) | P1—O7—C24—C25 | −130.1 (4) |
C13—C14—C9—C10 | −0.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···O8i | 0.86 | 2.48 | 3.286 (3) | 157 |
C24—H24B···O5ii | 0.97 | 2.57 | 3.504 (4) | 162 |
O8—H8···O5i | 0.82 | 1.92 | 2.636 (2) | 145 |
C15—H15···Cl2iii | 0.98 | 2.91 | 3.872 (3) | 165 |
N4—H4···O8 | 0.86 | 2.28 | 2.634 (3) | 105 |
C24—H24A···O5 | 0.97 | 2.59 | 3.029 (5) | 107 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C17H20Cl2NO4P |
Mr | 404.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 7.790 (3), 9.297 (4), 14.372 (6) |
α, β, γ (°) | 82.817 (6), 80.842 (6), 70.323 (6) |
V (Å3) | 964.7 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.25 × 0.25 × 0.13 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.896, 0.944 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10997, 4863, 3635 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.159, 1.05 |
No. of reflections | 4863 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.34 |
Computer programs: SMART (Bruker 2001), SAINT (Bruker 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ZORTEP-II (Zsolnai, 1997) and PLATON (Spek, 2009), 'enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995)'.
P1—O5 | 1.4712 (17) | P1—O7 | 1.565 (2) |
P1—O6 | 1.5531 (16) | P1—C15 | 1.819 (2) |
O5—P1—O6 | 115.79 (10) | O5—P1—C15 | 113.51 (10) |
O5—P1—O7 | 114.61 (11) | O6—P1—C15 | 101.05 (9) |
O6—P1—O7 | 104.38 (10) | O7—P1—C15 | 106.08 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···O8i | 0.86 | 2.48 | 3.286 (3) | 157 |
C24—H24B···O5ii | 0.97 | 2.57 | 3.504 (4) | 162 |
O8—H8···O5i | 0.82 | 1.92 | 2.636 (2) | 145 |
C15—H15···Cl2iii | 0.98 | 2.91 | 3.872 (3) | 165 |
N4—H4···O8 | 0.86 | 2.28 | 2.634 (3) | 105 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x+1, y, z. |
Acknowledgements
MK thanks the University Grants Commission, New Delhi, for sanctioning the major project for this work.
References
Allen, M. C., Fuhrer, W., Tuck, B., Wade, R. & Wood, J. M. (1989). J. Med. Chem. 32, 1652–1661. CrossRef CAS PubMed Web of Science Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baylis, E. K., Cambell, C. D. & Dingwall, J. G. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 2845–2853. CrossRef Web of Science Google Scholar
Boehlow, T., De la Cruz, A., Rath, N. P. & Spilling, C. D. (1997). Acta Cryst. C53, 1947–1949. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ezra, F. S. & Collin, R. L. (1973). Acta Cryst. B29, 1398–1403. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Fields, S. C. (1999). Tetrahedron, 55, 12237–12273. Web of Science CrossRef CAS Google Scholar
Hirschmann, R., Smith, A. B., Taylor, C. M., Benkovic, P., Taylor, S. D., Yager, K. M., Sprengeler, P. A. & Benkovic, S. J. (1994). Science, 265, 234–237. CrossRef CAS PubMed Web of Science Google Scholar
Kafarski, P. & Lejczak, B. (1991). Phosphorus Sulfur Silicon Relat. Elem. 63, 193–215. CrossRef CAS Web of Science Google Scholar
Miliszkiewicz, D., Wieczorek, P., Lejczak, B., Kowalik, E. & Kafarski, P. (1992). Pestic. Sci. 34, 349–354. CrossRef CAS Web of Science Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Rużić-Toroš, Ž., Kojić-Prodić, B. & Šljukic, M. (1978). Acta Cryst. B34, 3110–3113. CSD CrossRef IUCr Journals Web of Science Google Scholar
Sanders, T. C., Hammond, G. B., Golen, J. A. & Williard, P. G. (1996). Acta Cryst. C52, 667–669. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sawka-Dobrowolska, W. & Kowalik, J. (1985). Acta Cryst. C41, 1255–1258. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sawka-Dobrowolska, W. & Rułko, F. (1987). Acta Cryst. C43, 291–293. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Syam Prasad, G., Radha Krishna, J., Manjunath, M., Vijaya Sarathi Reddy, O., Krishnaiah, M., Suresh Reddy, C. & Vedavati G. Puranik (2007). Arkivoc, xii, pp. 133–141. Google Scholar
Yang, S., Song, B., Zhang, G. P., Jin, L.-H., Hu, D.-Y. & Xue, W. (2005). Acta Cryst. E61, o1662–o1664. Web of Science CrossRef IUCr Journals Google Scholar
Zsolnai, L. (1997). ZORTEPII. University of Heidelberg, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of α-aminophosphonates has attracted much interest because of their biological activity and structural analogy to α-amino acids (Fields, 1999). They also act as peptide mimics (Kafarski et al., 1991), enzyme inhibitors (Allen et al., 1989), haptens of catalytic antibodies (Hirschmann et al., 1994), antibiotics and pharmacological agents (Baylis et al., 1984) and the analogues of amino acids, aminophosphonic and aminophophinic acids as plant growth regulators and herbicides (Miliszkiewicz et al., 1992). As a result, a variety of synthetic approaches have been developed for the synthesis of α-aminophosphonates. The title compound (I) exhibits antibacterial activity against Gram positive as well as Gram negative bacteria (Syam et al., 2007)
The molecular structure of the title compound is shown in Fig. 1. (I). The P—O bond distances are in good agreement with those in related structures (Boehlow et al., 1997; Yang et al., 2005). The P1—C15 bond length is in good agreement with the reported values of 1.821 (6) Å, 1.808 (9) Å, 1.813 (6)Å in related structures (Rużić-Toroš et al., 1978; Sawka-Dobrowolska & Rułko, 1987; Sanders et al., 1996). The C9–N4 bond length (1.384 (2) Å) is intermediate between C—N and C=N double bond distances, which shows influence of the delocalization of electrons from the benzene ring. The P atom adopts a distorted tetrahedral configuration, with the angles in the range of 101.1 (1)° - 115.8 (1)°. The deformation of the PO3C tetrahedra may be explained in terms of steric effects from the adjacent bulky ethoxy groups. There are some differences between similar bonds in the P-O-C-C groups and this may be attributed to the larger than normal anisotropic displacement parameters of the atoms in the groups. This was not considered severe enough to model as disorder (Ezra & Collin, 1973; Sawka-Dobrowolska & Kowalik, 1985; Sanders et al., 1996). In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds link pairs of molecules into centrosymmetric dimers. These dimers, are in turn, linked by weak intermolecular C-H···O hydrogen bonds into one-dimensional chains along [010](see Fig. 2). Additional stabilization is provided by very weak C—H···Cl interactions. .