organic compounds
(2S,3R,4R,5R)-3,4-Dihydroxy-5-(hydroxymethyl)pyrrolidine-2-carboxylic acid [(2S,3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)proline]
aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, bDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, cSummit PLC, 91 Milton Park, Abingdon, Oxon OX14 4RY, England, and dPhytoquest Limited, IBERS, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk
The 6H11NO5, establishes the at the four stereogenic centres; the is determined by the use of D-glucuronolactone as the starting material for the synthesis. Molecules are linked by intermolecular O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network, with each molecule acting as a donor and acceptor for five hydrogen bonds.
of the title compound, CRelated literature
For related literature on iminosugars, see: Asano et al. (2000); Watson et al. (2001). For related literature on pipecolic acids, see: Fleet et al. (1987); Booth et al. (2007); Bashyal, Chow, Fellows & Fleet (1987); Manning et al. (1985); di Bello et al. (1984); Yoshimura et al. (2008). For related literature on bulgecinine, see: Toumi et al. (2008); Bashyal et al. (1986); Bashyal, Chow & Fleet (1987); Shinagawa et al. (1984, 1985). For related literature on alexines, see: Pereira et al. (1991); Donohoe et al. (2008); Kato et al. (2003); Wormald et al. (1998). For see: Flack (1983); Flack & Bernardinelli (2000); Flack & Shmueli (2007); Hooft et al. (2008); Thompson et al. (2008); Watkin (1994). For the weighting scheme, see: Prince (1982); Thompson & Watkin (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536809035636/lh2896sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809035636/lh2896Isup2.hkl
The title compound was recrystallized from a mixture of hot ethanol and water: m.p. 449 K - decomposed; [α]D25 +14.7 (c, 1.13 in H2O).
Initial
of the Flack x parameter gave a value of -0.5 (10), suggesting that the could not be determined (Flack, 1983; Flack & Bernardinelli, 2000). Analysis of the Bijvoet differences using CRYSTALS gave the Hooft y parameter as -0.2 (7), and the probability the configuration is correct assuming the material is was determioned to be 78.7% (Hooft et al., 2008; Thompson et al. 2008; Thompson & Watkin 2009). In the absence of significant (FRIEDIF = 6.71; Flack & Shmueli, 2007), Friedel pairs were merged for the final refinement.The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C6H11NO5 | Z = 1 |
Mr = 177.16 | F(000) = 94 |
Triclinic, P1 | Dx = 1.569 Mg m−3 |
Hall symbol: P 1 | Melting point: not measured K |
a = 5.4160 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.8236 (3) Å | Cell parameters from 696 reflections |
c = 6.6006 (3) Å | θ = 5–27° |
α = 102.836 (2)° | µ = 0.14 mm−1 |
β = 104.776 (2)° | T = 150 K |
γ = 102.8244 (19)° | Plate, clear_pale_colourless |
V = 187.50 (2) Å3 | 0.25 × 0.17 × 0.06 mm |
Area diffractometer | 814 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 27.5°, θmin = 5.6° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −7→7 |
Tmin = 0.94, Tmax = 0.99 | k = −6→7 |
2314 measured reflections | l = −8→7 |
834 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 22.5 35.8 21.7 10.1 2.91 |
S = 1.00 | (Δ/σ)max = 0.0000793 |
834 reflections | Δρmax = 0.24 e Å−3 |
109 parameters | Δρmin = −0.17 e Å−3 |
3 restraints |
C6H11NO5 | γ = 102.8244 (19)° |
Mr = 177.16 | V = 187.50 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.4160 (2) Å | Mo Kα radiation |
b = 5.8236 (3) Å | µ = 0.14 mm−1 |
c = 6.6006 (3) Å | T = 150 K |
α = 102.836 (2)° | 0.25 × 0.17 × 0.06 mm |
β = 104.776 (2)° |
Area diffractometer | 834 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 814 reflections with I > 2σ(I) |
Tmin = 0.94, Tmax = 0.99 | Rint = 0.025 |
2314 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 3 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.24 e Å−3 |
834 reflections | Δρmin = −0.17 e Å−3 |
109 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1323 (3) | 0.4021 (3) | 0.0397 (3) | 0.0170 | |
C2 | 0.3330 (4) | 0.5769 (4) | 0.1694 (3) | 0.0124 | |
O3 | 0.3285 (3) | 0.7782 (3) | 0.2816 (3) | 0.0161 | |
C4 | 0.6067 (4) | 0.5299 (3) | 0.1892 (3) | 0.0118 | |
N5 | 0.8297 (3) | 0.7483 (3) | 0.3462 (3) | 0.0120 | |
C6 | 0.8425 (4) | 0.7309 (4) | 0.5744 (3) | 0.0130 | |
C7 | 1.1277 (4) | 0.8313 (4) | 0.7284 (3) | 0.0167 | |
O8 | 1.2417 (3) | 1.0809 (3) | 0.7415 (3) | 0.0209 | |
C9 | 0.7092 (4) | 0.4584 (4) | 0.5443 (3) | 0.0150 | |
C10 | 0.6269 (4) | 0.3243 (4) | 0.2968 (3) | 0.0135 | |
O11 | 0.8192 (3) | 0.2063 (3) | 0.2544 (3) | 0.0229 | |
O12 | 0.4844 (4) | 0.4511 (3) | 0.6175 (3) | 0.0252 | |
H41 | 0.6365 | 0.4960 | 0.0477 | 0.0144* | |
H61 | 0.7333 | 0.8262 | 0.6278 | 0.0169* | |
H72 | 1.1284 | 0.8203 | 0.8747 | 0.0191* | |
H71 | 1.2343 | 0.7354 | 0.6770 | 0.0194* | |
H91 | 0.8360 | 0.3904 | 0.6257 | 0.0183* | |
H101 | 0.4566 | 0.2013 | 0.2549 | 0.0154* | |
H81 | 1.2048 | 1.1744 | 0.8368 | 0.0313* | |
H51 | 0.7954 | 0.8869 | 0.3332 | 0.0177* | |
H52 | 0.9817 | 0.7443 | 0.3204 | 0.0178* | |
H111 | 0.8993 | 0.2734 | 0.1839 | 0.0347* | |
H121 | 0.4206 | 0.3112 | 0.6224 | 0.0383* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0115 (7) | 0.0187 (7) | 0.0178 (7) | 0.0024 (5) | 0.0034 (5) | 0.0030 (6) |
C2 | 0.0128 (9) | 0.0137 (9) | 0.0134 (9) | 0.0052 (7) | 0.0051 (7) | 0.0074 (7) |
O3 | 0.0153 (7) | 0.0148 (7) | 0.0210 (7) | 0.0075 (6) | 0.0074 (5) | 0.0057 (6) |
C4 | 0.0113 (9) | 0.0115 (8) | 0.0130 (9) | 0.0032 (7) | 0.0050 (7) | 0.0032 (7) |
N5 | 0.0123 (8) | 0.0098 (7) | 0.0150 (8) | 0.0039 (6) | 0.0052 (6) | 0.0042 (6) |
C6 | 0.0142 (9) | 0.0115 (8) | 0.0136 (9) | 0.0030 (7) | 0.0053 (7) | 0.0041 (7) |
C7 | 0.0154 (9) | 0.0161 (9) | 0.0152 (9) | 0.0013 (8) | 0.0023 (7) | 0.0042 (8) |
O8 | 0.0246 (8) | 0.0151 (8) | 0.0190 (7) | −0.0019 (6) | 0.0100 (6) | 0.0020 (6) |
C9 | 0.0173 (10) | 0.0130 (9) | 0.0165 (10) | 0.0042 (7) | 0.0066 (8) | 0.0067 (7) |
C10 | 0.0121 (9) | 0.0124 (9) | 0.0176 (9) | 0.0049 (7) | 0.0058 (7) | 0.0050 (7) |
O11 | 0.0280 (8) | 0.0223 (8) | 0.0356 (9) | 0.0180 (7) | 0.0218 (7) | 0.0179 (7) |
O12 | 0.0325 (9) | 0.0164 (7) | 0.0304 (9) | 0.0018 (7) | 0.0222 (8) | 0.0056 (7) |
O1—C2 | 1.264 (3) | C7—O8 | 1.421 (2) |
C2—O3 | 1.249 (2) | C7—H72 | 0.981 |
C2—C4 | 1.545 (2) | C7—H71 | 0.959 |
C4—N5 | 1.498 (2) | O8—H81 | 0.832 |
C4—C10 | 1.532 (3) | C9—C10 | 1.545 (3) |
C4—H41 | 0.972 | C9—O12 | 1.415 (2) |
N5—C6 | 1.517 (2) | C9—H91 | 0.972 |
N5—H51 | 0.885 | C10—O11 | 1.420 (2) |
N5—H52 | 0.886 | C10—H101 | 0.963 |
C6—C7 | 1.515 (3) | O11—H111 | 0.816 |
C6—C9 | 1.535 (3) | O12—H121 | 0.823 |
C6—H61 | 0.973 | ||
O1—C2—O3 | 126.24 (18) | C6—C7—O8 | 111.22 (16) |
O1—C2—C4 | 115.43 (17) | C6—C7—H72 | 108.8 |
O3—C2—C4 | 118.32 (17) | O8—C7—H72 | 109.4 |
C2—C4—N5 | 110.92 (15) | C6—C7—H71 | 109.8 |
C2—C4—C10 | 109.46 (14) | O8—C7—H71 | 108.5 |
N5—C4—C10 | 103.55 (15) | H72—C7—H71 | 109.1 |
C2—C4—H41 | 111.2 | C7—O8—H81 | 110.0 |
N5—C4—H41 | 108.5 | C6—C9—C10 | 106.41 (15) |
C10—C4—H41 | 113.0 | C6—C9—O12 | 106.33 (16) |
C4—N5—C6 | 106.33 (14) | C10—C9—O12 | 111.81 (16) |
C4—N5—H51 | 110.5 | C6—C9—H91 | 110.0 |
C6—N5—H51 | 109.1 | C10—C9—H91 | 109.3 |
C4—N5—H52 | 109.8 | O12—C9—H91 | 112.7 |
C6—N5—H52 | 111.2 | C9—C10—C4 | 103.65 (15) |
H51—N5—H52 | 109.8 | C9—C10—O11 | 109.89 (16) |
N5—C6—C7 | 110.92 (15) | C4—C10—O11 | 113.98 (15) |
N5—C6—C9 | 105.61 (15) | C9—C10—H101 | 108.3 |
C7—C6—C9 | 114.30 (16) | C4—C10—H101 | 111.8 |
N5—C6—H61 | 108.0 | O11—C10—H101 | 109.0 |
C7—C6—H61 | 109.9 | C10—O11—H111 | 110.0 |
C9—C6—H61 | 107.9 | C9—O12—H121 | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H71···O12i | 0.96 | 2.39 | 3.328 (3) | 166 |
C10—H101···O3ii | 0.96 | 2.47 | 3.199 (3) | 133 |
O8—H81···O1iii | 0.83 | 1.85 | 2.679 (3) | 175 |
N5—H51···O11iv | 0.88 | 2.03 | 2.873 (3) | 160 |
N5—H52···O3i | 0.89 | 1.93 | 2.814 (3) | 173 |
O11—H111···O1i | 0.82 | 1.89 | 2.696 (3) | 170 |
O12—H121···O8v | 0.82 | 1.91 | 2.668 (3) | 154 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C6H11NO5 |
Mr | 177.16 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 5.4160 (2), 5.8236 (3), 6.6006 (3) |
α, β, γ (°) | 102.836 (2), 104.776 (2), 102.8244 (19) |
V (Å3) | 187.50 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.25 × 0.17 × 0.06 |
Data collection | |
Diffractometer | Area diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.94, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2314, 834, 814 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.066, 1.00 |
No. of reflections | 834 |
No. of parameters | 109 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.17 |
Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H81···O1i | 0.83 | 1.85 | 2.679 (3) | 175 |
N5—H51···O11ii | 0.88 | 2.03 | 2.873 (3) | 160 |
N5—H52···O3iii | 0.89 | 1.93 | 2.814 (3) | 173 |
O11—H111···O1iii | 0.82 | 1.89 | 2.696 (3) | 170 |
O12—H121···O8iv | 0.82 | 1.91 | 2.668 (3) | 154 |
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x−1, y−1, z. |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Bashyal, B. P., Chow, H.-F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415–422. CrossRef CAS Web of Science Google Scholar
Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1986). Tetrahedron Lett. 27, 3205–3208. CrossRef CAS Web of Science Google Scholar
Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1987). Tetrahedron, 43, 423–430. CrossRef CAS Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Booth, K. V., Jenkinson, S. F., Watkin, D. J., Sharp, H., Jones, P. W., Nash, R. J. & Fleet, G. W. J. (2007). Acta Cryst. E63, o3783–o3784. Web of Science CSD CrossRef IUCr Journals Google Scholar
di Bello, I. C., Dorling, P., Fellows, L. & Winchester, B. (1984). FEBS Lett. 176, 61–64. CrossRef PubMed Google Scholar
Donohoe, T. J., Cheeseman, M. D., O'Riordan, T. J. C. & Kershaw, J. A. (2008). Org. Biomol. Chem. pp. 3896–3898. Web of Science CSD CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257–265. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fleet, G. W. J., Fellows, L. E. & Smith, P. W. (1987). Tetrahedron, 43, 979–990. CrossRef Web of Science Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kato, A., Kano, E., Adachi, I., Molyneux, R. J., Watson, A. A., Nash, R. J., Fleet, G. W. J., Wormald, M. R., Kizu, H., Ikeda, K. & Asano, N. (2003). Tetrahedron Asymmetry, 14, 325–331. Web of Science CrossRef CAS Google Scholar
Manning, K. S., Lynn, D. G., Shabanowitz, J., Fellows, L. E., Singh, M. & Schrire, B. D. (1985). J. Chem. Soc. Chem. Commun. pp. 127–129. CrossRef Web of Science Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pereira, A. C. D., Kaplan, M. A. C., Maia, J. G. S., Gottlieb, O. R., Nash, R. J., Fleet, G., Pearce, L., Watkin, D. J. & Scofield, A. M. (1991). Tetrahedron, 47, 5637–5640. CAS Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Shinagawa, S., Kasahara, F., Harada, S. & Asai, M. (1984). Tetrahedron, 40, 3465–3470. CSD CrossRef CAS Web of Science Google Scholar
Shinagawa, S., Maki, M., Kintaka, K., Imada, A. & Asai, M. (1985). J. Antibiot. 38, 17–23. CrossRef CAS PubMed Web of Science Google Scholar
Thompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712–717. Web of Science CrossRef CAS Google Scholar
Thompson, A. L., Watkin, D. J., Gal, Z. A., Jones, L., Hollinshead, J., Jenkinson, S. F., Fleet, G. W. J. & Nash, R. J. (2008). Acta Cryst. C64, o649–o652. Web of Science CSD CrossRef IUCr Journals Google Scholar
Toumi, M., Couty, F. & Evano, G. (2008). Tetrahedron Lett. 49, 1175–1179. Web of Science CrossRef CAS Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. Web of Science CrossRef PubMed CAS Google Scholar
Wormald, M. R., Nash, R. J., Hrnciar, P., White, J. D., Molyneux, R. J. & Fleet, G. W. J. (1998). Tetrahedron Asymmetry, 9, 2549–2558. Web of Science CrossRef CAS Google Scholar
Yoshimura, Y., Ohara, C., Imahori, T., Saito, Y., Kato, A., Miyauchi, S., Adachi, I. & Takahata, H. (2008). Bioorg. Med. Chem. 16, 8273–8286. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
This paper firmly establishes the structure of the trihydroxyproline 1 (Fig. 1), the amino acid corresponding to DMDP 2. There are over 100 iminosugars that have been isolated as natural products [such as DMDP 2 and DNJ 4] that are the equivalent of carbohydrates with the ring oxygen replaced by nitrogen (Asano et al., 2000; Watson et al., 2001). In contrast, the pipecolic acid BR1 3 [related to DNJ 4 in the same way as 1 to 2] (Fleet et al.,1987; Booth et al., 2007; Bashyal, Chow, Fellows & Fleet, 1987) is among the rare examples of naturally occurring amino acid sugar analogues. BR1 3 was isolated from the seeds of Baphia racemosa (Manning et al., 1985) and is an inhibitor of glucuronidase and iduronidase (di Bello et al., 1984; Yoshimura et al., 2008). Bulgecinine 5 (Toumi et al., 2008; Bashyal et al., 1986; Bashyal, Chow & Fleet, 1987), a deoxy analogue of 1, is a constituent of the bulgecin glycopeptide antibiotics (Shinagawa et al., 1984; Shinagawa et al., 1985). 7a-Epialexaflorine 6, isolated from the leaves of Alexa grandiflora (Pereira et al., 1991), is the only example of an amino acid analogue of the alexines (Donohoe et al., 2008; Kato et al., 2003; Wormald et al., 1998).
The title compound (Fig. 2) was seen to adopt an envelope conformation with C4 out of the plane. The absolute configuration was determined by the use of D-glucuronolactone as the starting material for the synthesis. The molecule exists as an extensively hydrogen bonded nextwork with each molecule acting as a donor and acceptor for 5 hydrogen bonds (Fig. 3, Fig. 4). Only classical hydrogen bonding has been considered.