organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2486-o2487

2,4,6,8-Tetra­kis(2-meth­oxy­phen­yl)-3,7-di­aza­bi­cyclo­[3.3.1]nonan-9-one di­ethyl ether hemisolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 September 2009; accepted 11 September 2009; online 19 September 2009)

In the title compound, C35H36N2O5·0.5C4H10O, the asymmetric unit contains one bicyclo­[3.3.1]nonane mol­ecule and a half-occupancy diethyl ether solvent with the O atom lying on a crystallographic inversion center. Two intra­molecular N—H⋯O hydrogen bonds generate S(6) ring motifs. The bicyclo­[3.3.1]nonane ring system adopts a chair-boat conformation. In the crystal structure, the mol­ecules are linked by weak inter­molecular C—H⋯N hydro­gen bonds into chains along the b axis; additional stabilization is provide by C—H⋯π inter­actions.

Related literature

For applications of bicyclo­[3.3.1]nonane derivatives, see: Arias-Perez et al. (1997[Arias-Perez, M. S., Alejo, A. & Maroto, A. (1997). Tetrahedron, 53, 13099-13110.]). For applications of N,N-diphenyl derivatives, see: Srikrishna & Vijayakumar (1998[Srikrishna, A. & Vijayakumar, D. (1998). Tetrahedron Lett. 39, 5833-5834.]). For bicyclic systems with aryl groups, see: Vijayakumar et al. (2000[Vijayakumar, V., Sundaravadivelu, M., Perumal, S. & Hewlins, M. J. E. (2000). Magn. Reson. Chem. 38, 883-885.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C35H36N2O5·0.5C4H10O

  • Mr = 1203.44

  • Monoclinic, P 21 /c

  • a = 13.5607 (2) Å

  • b = 13.7640 (2) Å

  • c = 20.3227 (3) Å

  • β = 123.143 (1)°

  • V = 3176.10 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.36 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 49818 measured reflections

  • 11431 independent reflections

  • 8831 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.144

  • S = 1.03

  • 11431 reflections

  • 426 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.87 2.19 2.8184 (13) 129
N2—H2⋯O5 0.87 2.32 2.8936 (15) 124
C4—H4A⋯N2i 0.93 2.60 3.470 (2) 156
N1—H1⋯Cg1ii 0.87 2.66 3.4167 (10) 146
C34—H34CCg2iii 0.96 2.70 3.5099 (16) 143
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z+2. Cg1 and Cg2 are the centroids of the C12–C17 and C19–C24 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bicyclo[3.3.1]nonane moieties are present in many biologically active molecules like alkaloids and drugs (Arias-Perez el al., 1997). Functionalized 3-azabicyclo[3.3.1]nonanes have been studied intensively because of their pharmaceutical use and these compounds find applications as an important class of organic compounds in the field of molecular recognition. The 1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones are local anaesthetics. Some of them have hypotensive activity. N,N-diphenyl derivatives are found to possess antiphogistic and anti-thrombic activities (Srikrishna & Vijayakumar, 1998). The synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives are of much interest due to their diverse biological activities, such as antibacterial, antifungal, antiarrhythmic, antiphologistic, antithrombic, calcium antagonistic, hypotensive and neuroleptic properties and also because of their presence in naturally occurring lupin alkaloids. The conformational analysis of 3,7-diazabicyclo[3.3.1]nonanes (bispidines) is of considerable interest both from the theoretical view point and due to their biological activity. In recent years the 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonanes constitutes an interesting case for study because of the presence of four aryl groups. If all the aryls are in equatorial orientations, molecular models indicate close proximity of the aryls in both rings in the bicyclic systems (Vijayakumar el al., 2000). If they are in the twin chair conformation, it causes severe non-bonded interactions between aryl groups in 2,8-positions and 4,6-positions. So in order to attain the stability, the system may exist in the twin chair conformations and the aryls may assume different orientations in order that the overall stability can be attained. Hence these systems constitute an interesting case for study.

In the title compound (Fig. 1), the asymmetric unit contains one bicyclo[3.3.1]nonane molecule and a half-occupied diethyl ether solvent with the oxygen atom of diethyl ether molecule lying on the crystallographic inversion center (1/2, 1/2, 0). The intramolecular N2—H2···O4 and N2—H2···O5 hydrogen bonds form six-membered rings with S(6) ring motifs (Bernstein et al., 1995). The bicyclo[3.3.1]nonane ring adopts a chair-boat conformation with puckering parameter Q = 0.6509 (12) Å, θ = 8.67 (11)°, ϕ = 131.5 (7)° for one of the piperidine rings (N1/C7–C11) and Q = 0.7318 (12) Å, θ = 90.93 (9)°, ϕ = 6.12 (10)° for the other piperidine ring (N2/C18/C8–C10/C25) (Cremer & Pople, 1975). The N atoms adopt a pyramidal configuration. The phenyl rings substituted at C7 (C1–C6) and C11 (C12–C17) positions are oriented with one another with an angle of 23.02 (6)° whereas the phenyl rings that substituted at C18 (C19–C24) and C25 (C26–C31) are oriented with one another at an angle of 55.08 (7)°. Two methoxyphenyl groups substituted at C7 and C11 are in equatorial orientations with torsion angles C6–C7–C8–C9 = -171.93 (9)° and C9–C10–C11–C12 = -175.76 (9)°. The other two methoxyphenyl groups substituted at C18 and C25 have torsion angles of C9–C8–C18–C19 = 132.02 (9)° and C9–C10–C25–C26 = -120.19 (9)°.

In the crystal structure, the molecules are linked by intermolecular C4—H4A···N2 hydongen bonds into one-dimensional chains along the b axis. The molecules are also stabilized by the C—H···π interactions.

Related literature top

For applications of bicyclo[3.3.1]nonane derivatives, see: Arias-Perez el alt. (1997). For applications of N,N-diphenyl derivatives, see: Srikrishna & Vijayakumar (1998). For bicyclic systems with aryl groups, see: Vijayakumar et al. (2000). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C12–C17 and C19–C24 benzene rings, respectively.

Experimental top

A mixture of acetone (0.68 ml), 2-methoxybenzaldehyde (5 g) and dry ammonium acetate (1.4 g) was taken in 1:4:2 molar ratio in ethanol and it were heated on water bath till the colour changes to reddish orange. The mixture was allowed to stand for 24 h resulting in the formation of a sticky substance. To that diethyl ether was added and warmed gently. The fine needle-shaped crystals were separated out from the reaction mixture upon slow evaporation of the solvent. The purity of the compound was checked by TLC. Yield: 53%. M.p. 507 K.

Refinement top

N-bound hydrogen atoms were located from the difference Fourier map and refined riding on their parent atom with Uiso(H) = 1.2Ueq(N). The rest of the hydrogen atoms were positioned geometrically [C–H = 0.9300–0.9800 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl groups excepting for those in the solvent molecule.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability ellipsoids for non-H atoms. Atoms labelled with suffix B are generated by symmetry code (-x + 1, -y + 1, -z + 2). Intramolecular hydrogen bonds are shown in as dashed lines. Hydrogen atoms of the solvent molecules have been omittted for clarity.
[Figure 2] Fig. 2. The crystal packing of title compound, showing the molecules linked along the b axis. The solvent molecules are omitted for clarity. Intermolecular hydrogen bonds are shown as dashed lines.
2,4,6,8-Tetrakis(2-methoxyphenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one diethyl ether hemisolvate top
Crystal data top
C35H36N2O5·0.5C4H10OF(000) = 1284
Mr = 1203.44Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9998 reflections
a = 13.5607 (2) Åθ = 2.3–32.3°
b = 13.7640 (2) ŵ = 0.08 mm1
c = 20.3227 (3) ÅT = 100 K
β = 123.143 (1)°Block, colourless
V = 3176.10 (8) Å30.36 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11431 independent reflections
Radiation source: fine-focus sealed tube8831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 32.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2019
Tmin = 0.971, Tmax = 0.980k = 2018
49818 measured reflectionsl = 2830
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0696P)2 + 1.0838P]
where P = (Fo2 + 2Fc2)/3
11431 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C35H36N2O5·0.5C4H10OV = 3176.10 (8) Å3
Mr = 1203.44Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.5607 (2) ŵ = 0.08 mm1
b = 13.7640 (2) ÅT = 100 K
c = 20.3227 (3) Å0.36 × 0.26 × 0.24 mm
β = 123.143 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8831 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.035
49818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.03Δρmax = 0.58 e Å3
11431 reflectionsΔρmin = 0.43 e Å3
426 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.37715 (7)1.20002 (6)0.79917 (5)0.02045 (17)
O20.16165 (8)0.81583 (7)0.50351 (5)0.02487 (19)
O30.44172 (7)0.91411 (6)0.75132 (5)0.02168 (18)
O40.44782 (7)0.85185 (6)0.93266 (5)0.02092 (18)
O50.39565 (7)0.69167 (6)0.78054 (5)0.02172 (18)
N10.12334 (8)1.00157 (7)0.64982 (5)0.01379 (17)
H10.07701.04440.61480.017*
N20.23043 (8)0.81126 (6)0.79232 (5)0.01415 (17)
H20.30210.78930.82310.017*
C10.26664 (10)1.21183 (8)0.78518 (6)0.0165 (2)
C20.23225 (12)1.29360 (9)0.80816 (7)0.0238 (2)
H2A0.28481.34450.83410.029*
C30.11833 (13)1.29837 (10)0.79187 (8)0.0272 (3)
H3A0.09481.35300.80680.033*
C40.03991 (11)1.22298 (10)0.75379 (7)0.0237 (2)
H4A0.03571.22640.74370.028*
C50.07496 (10)1.14171 (9)0.73055 (6)0.0182 (2)
H5A0.02211.09090.70500.022*
C60.18748 (9)1.13516 (8)0.74484 (6)0.01415 (19)
C70.22560 (9)1.05217 (7)0.71488 (6)0.01278 (18)
H7A0.27181.07910.69530.015*
C80.30324 (9)0.97559 (7)0.77992 (6)0.01276 (18)
H8A0.37101.00730.82540.015*
C90.34324 (9)0.91109 (8)0.73914 (6)0.01396 (19)
C100.24244 (9)0.85293 (7)0.67446 (6)0.01329 (18)
H10A0.27180.80960.65060.016*
C110.15541 (9)0.92867 (8)0.61200 (6)0.01379 (19)
H11A0.19440.96120.58930.017*
C120.04571 (10)0.87765 (8)0.54689 (6)0.0154 (2)
C130.06243 (10)0.88483 (9)0.53918 (7)0.0187 (2)
H13A0.06970.92560.57280.022*
C140.16013 (11)0.83219 (9)0.48217 (7)0.0246 (3)
H14A0.23200.83820.47750.029*
C150.14919 (12)0.77071 (9)0.43244 (7)0.0272 (3)
H15A0.21380.73480.39480.033*
C160.04261 (12)0.76229 (9)0.43826 (7)0.0248 (3)
H16A0.03590.72080.40480.030*
C170.05428 (11)0.81632 (8)0.49459 (6)0.0190 (2)
C180.23146 (9)0.91662 (7)0.80614 (6)0.01316 (18)
H18A0.14970.93900.77360.016*
C190.27336 (9)0.93751 (8)0.89074 (6)0.01536 (19)
C200.20440 (11)0.99246 (9)0.90835 (7)0.0198 (2)
H20A0.13191.01580.86750.024*
C210.24159 (12)1.01339 (10)0.98597 (7)0.0256 (3)
H21A0.19461.05050.99660.031*
C220.34911 (12)0.97828 (10)1.04684 (7)0.0270 (3)
H22A0.37420.99171.09860.032*
C230.41963 (11)0.92322 (9)1.03119 (7)0.0231 (2)
H23A0.49140.89941.07240.028*
C240.38282 (10)0.90363 (8)0.95362 (6)0.0178 (2)
C250.18339 (9)0.79109 (7)0.70891 (6)0.01322 (18)
H25A0.09970.80860.67910.016*
C260.19018 (9)0.68381 (8)0.69502 (6)0.01475 (19)
C270.08894 (10)0.63165 (9)0.64255 (7)0.0196 (2)
H27A0.01610.66250.61760.024*
C280.09463 (12)0.53367 (9)0.62668 (8)0.0268 (3)
H28A0.02630.49980.59130.032*
C290.20283 (12)0.48772 (9)0.66404 (9)0.0277 (3)
H29A0.20670.42230.65410.033*
C300.30598 (11)0.53789 (9)0.71632 (8)0.0229 (2)
H30A0.37850.50660.74090.028*
C310.29907 (10)0.63545 (8)0.73123 (7)0.0170 (2)
C320.45303 (13)1.28244 (10)0.82399 (9)0.0301 (3)
H32A0.52391.26550.82680.045*
H32B0.47231.30290.87490.045*
H32C0.41401.33440.78700.045*
C330.18282 (14)0.74382 (13)0.46205 (9)0.0394 (4)
H33A0.26380.74650.47820.059*
H33B0.13310.75590.40660.059*
H33C0.16570.68070.47340.059*
C340.55698 (11)0.81167 (11)0.99437 (8)0.0296 (3)
H34A0.59570.78030.97230.044*
H34B0.54230.76511.02320.044*
H34C0.60630.86271.02910.044*
C350.50914 (11)0.64911 (11)0.81418 (9)0.0313 (3)
H35A0.56850.69810.84150.047*
H35B0.51560.62150.77330.047*
H35C0.51980.59900.85040.047*
O60.50000.50001.00000.1179 (14)
C36A0.4158 (5)0.5316 (5)0.9475 (3)0.0687 (15)0.50
H36A0.40780.50470.90060.082*0.50
H36B0.42870.60080.94690.082*0.50
C37A0.2995 (6)0.5198 (5)0.9382 (5)0.0812 (17)0.50
H37A0.23910.54880.88950.122*0.50
H37B0.30150.55110.98110.122*0.50
H37C0.28300.45190.93790.122*0.50
C38A0.6159 (5)0.4889 (4)1.0238 (3)0.0600 (12)0.50
H38A0.64440.55371.02420.072*0.50
H38B0.61430.45410.98170.072*0.50
C39A0.7123 (6)0.4408 (4)1.1000 (3)0.0737 (18)0.50
H39A0.78540.44261.10280.111*0.50
H39B0.69120.37451.10090.111*0.50
H39C0.72100.47511.14400.111*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0177 (4)0.0172 (4)0.0257 (4)0.0036 (3)0.0114 (3)0.0021 (3)
O20.0307 (5)0.0253 (5)0.0222 (4)0.0058 (4)0.0168 (4)0.0031 (3)
O30.0154 (4)0.0208 (4)0.0313 (5)0.0015 (3)0.0144 (3)0.0044 (3)
O40.0152 (3)0.0229 (4)0.0167 (4)0.0030 (3)0.0036 (3)0.0012 (3)
O50.0131 (3)0.0185 (4)0.0276 (4)0.0024 (3)0.0073 (3)0.0005 (3)
N10.0140 (4)0.0125 (4)0.0120 (4)0.0023 (3)0.0052 (3)0.0002 (3)
N20.0150 (4)0.0122 (4)0.0127 (4)0.0003 (3)0.0059 (3)0.0000 (3)
C10.0188 (5)0.0149 (5)0.0157 (4)0.0005 (4)0.0094 (4)0.0009 (4)
C20.0313 (6)0.0156 (5)0.0242 (6)0.0004 (4)0.0150 (5)0.0037 (4)
C30.0357 (7)0.0227 (6)0.0273 (6)0.0084 (5)0.0197 (5)0.0024 (5)
C40.0234 (5)0.0294 (6)0.0212 (5)0.0096 (5)0.0141 (5)0.0017 (5)
C50.0171 (5)0.0212 (5)0.0170 (5)0.0021 (4)0.0098 (4)0.0003 (4)
C60.0167 (4)0.0132 (4)0.0127 (4)0.0024 (3)0.0081 (4)0.0016 (3)
C70.0129 (4)0.0120 (4)0.0134 (4)0.0005 (3)0.0072 (3)0.0000 (3)
C80.0107 (4)0.0129 (4)0.0130 (4)0.0001 (3)0.0054 (3)0.0002 (3)
C90.0136 (4)0.0123 (4)0.0161 (4)0.0006 (3)0.0082 (4)0.0018 (3)
C100.0128 (4)0.0125 (4)0.0151 (4)0.0010 (3)0.0080 (3)0.0004 (3)
C110.0156 (4)0.0134 (4)0.0134 (4)0.0013 (3)0.0086 (4)0.0007 (3)
C120.0184 (5)0.0136 (4)0.0113 (4)0.0010 (4)0.0062 (4)0.0008 (3)
C130.0180 (5)0.0192 (5)0.0152 (5)0.0005 (4)0.0068 (4)0.0007 (4)
C140.0198 (5)0.0243 (6)0.0206 (5)0.0034 (4)0.0053 (4)0.0008 (4)
C150.0277 (6)0.0200 (6)0.0187 (5)0.0036 (5)0.0029 (5)0.0023 (4)
C160.0345 (6)0.0159 (5)0.0147 (5)0.0025 (4)0.0076 (5)0.0017 (4)
C170.0262 (5)0.0149 (5)0.0137 (4)0.0041 (4)0.0095 (4)0.0014 (4)
C180.0126 (4)0.0134 (4)0.0125 (4)0.0004 (3)0.0062 (3)0.0004 (3)
C190.0163 (4)0.0158 (5)0.0132 (4)0.0037 (4)0.0076 (4)0.0010 (3)
C200.0223 (5)0.0203 (5)0.0186 (5)0.0031 (4)0.0123 (4)0.0020 (4)
C210.0317 (6)0.0284 (6)0.0218 (6)0.0049 (5)0.0180 (5)0.0063 (5)
C220.0347 (7)0.0304 (7)0.0155 (5)0.0101 (5)0.0133 (5)0.0054 (5)
C230.0243 (5)0.0235 (6)0.0142 (5)0.0074 (4)0.0057 (4)0.0006 (4)
C240.0180 (5)0.0167 (5)0.0150 (5)0.0038 (4)0.0067 (4)0.0001 (4)
C250.0127 (4)0.0124 (4)0.0139 (4)0.0001 (3)0.0069 (3)0.0004 (3)
C260.0155 (4)0.0124 (4)0.0170 (4)0.0006 (3)0.0093 (4)0.0003 (3)
C270.0178 (5)0.0179 (5)0.0233 (5)0.0029 (4)0.0113 (4)0.0051 (4)
C280.0269 (6)0.0198 (6)0.0349 (7)0.0075 (5)0.0177 (5)0.0108 (5)
C290.0351 (7)0.0133 (5)0.0418 (7)0.0025 (5)0.0257 (6)0.0055 (5)
C300.0259 (6)0.0151 (5)0.0320 (6)0.0046 (4)0.0185 (5)0.0030 (4)
C310.0172 (5)0.0142 (5)0.0207 (5)0.0007 (4)0.0110 (4)0.0021 (4)
C320.0307 (6)0.0221 (6)0.0381 (7)0.0109 (5)0.0192 (6)0.0022 (5)
C330.0403 (8)0.0449 (9)0.0263 (7)0.0213 (7)0.0140 (6)0.0079 (6)
C340.0184 (5)0.0324 (7)0.0247 (6)0.0049 (5)0.0032 (5)0.0074 (5)
C350.0154 (5)0.0327 (7)0.0389 (7)0.0075 (5)0.0104 (5)0.0038 (6)
O60.109 (3)0.102 (3)0.186 (5)0.011 (2)0.108 (3)0.055 (3)
C36A0.078 (4)0.080 (4)0.063 (3)0.039 (3)0.049 (3)0.018 (3)
C37A0.088 (4)0.072 (4)0.110 (5)0.019 (3)0.071 (4)0.032 (4)
C38A0.059 (3)0.078 (3)0.048 (2)0.018 (3)0.033 (2)0.005 (2)
C39A0.125 (5)0.053 (3)0.076 (3)0.027 (3)0.076 (4)0.023 (3)
Geometric parameters (Å, º) top
O1—C11.3737 (14)C21—H21A0.9300
O1—C321.4258 (15)C22—C231.387 (2)
O2—C171.3654 (16)C22—H22A0.9300
O2—C331.4281 (16)C23—C241.3952 (16)
O3—C91.2186 (13)C23—H23A0.9300
O4—C241.3701 (15)C25—C261.5156 (15)
O4—C341.4281 (14)C25—H25A0.9800
O5—C311.3723 (14)C26—C271.3916 (15)
O5—C351.4243 (14)C26—C311.4061 (15)
N1—C71.4668 (13)C27—C281.3984 (17)
N1—C111.4669 (14)C27—H27A0.9300
N1—H10.8713C28—C291.3825 (19)
N2—C251.4748 (13)C28—H28A0.9300
N2—C181.4757 (14)C29—C301.3919 (19)
N2—H20.8733C29—H29A0.9300
C1—C21.3929 (16)C30—C311.3909 (16)
C1—C61.4056 (15)C30—H30A0.9300
C2—C31.393 (2)C32—H32A0.9600
C2—H2A0.9300C32—H32B0.9600
C3—C41.381 (2)C32—H32C0.9600
C3—H3A0.9300C33—H33A0.9600
C4—C51.3948 (17)C33—H33B0.9600
C4—H4A0.9300C33—H33C0.9600
C5—C61.3914 (15)C34—H34A0.9600
C5—H5A0.9300C34—H34B0.9600
C6—C71.5122 (15)C34—H34C0.9600
C7—C81.5637 (14)C35—H35A0.9600
C7—H7A0.9800C35—H35B0.9600
C8—C91.5036 (15)C35—H35C0.9600
C8—C181.5676 (15)O6—C36Ai1.140 (7)
C8—H8A0.9800O6—C36A1.140 (6)
C9—C101.5075 (14)O6—C38A1.378 (6)
C10—C111.5662 (14)O6—C38Ai1.378 (6)
C10—C251.5713 (15)C36A—C38Ai0.939 (6)
C10—H10A0.9800C36A—C37A1.492 (8)
C11—C121.5181 (15)C36A—C39Ai1.504 (8)
C11—H11A0.9800C36A—H36A0.9700
C12—C131.3905 (16)C36A—H36B0.9700
C12—C171.4110 (16)C37A—C39Ai0.885 (8)
C13—C141.3943 (16)C37A—C38Ai0.979 (7)
C13—H13A0.9300C37A—H37A0.9600
C14—C151.387 (2)C37A—H37B0.9600
C14—H14A0.9300C37A—H37C0.9600
C15—C161.389 (2)C38A—C36Ai0.939 (6)
C15—H15A0.9300C38A—C37Ai0.979 (8)
C16—C171.3947 (17)C38A—C39A1.527 (8)
C16—H16A0.9300C38A—H38A0.9700
C18—C191.5143 (15)C38A—H38B0.9700
C18—H18A0.9800C39A—C37Ai0.885 (8)
C19—C201.3931 (17)C39A—C36Ai1.504 (8)
C19—C241.4070 (15)C39A—H39A0.9600
C20—C211.3985 (17)C39A—H39B0.9600
C20—H20A0.9300C39A—H39C0.9600
C21—C221.385 (2)
C1—O1—C32118.28 (10)C26—C25—H25A106.9
C17—O2—C33117.96 (11)C10—C25—H25A106.9
C24—O4—C34117.55 (10)C27—C26—C31118.07 (10)
C31—O5—C35117.90 (10)C27—C26—C25120.69 (10)
C7—N1—C11113.09 (8)C31—C26—C25121.14 (9)
C7—N1—H1108.6C26—C27—C28121.23 (11)
C11—N1—H1108.8C26—C27—H27A119.4
C25—N2—C18110.91 (8)C28—C27—H27A119.4
C25—N2—H2111.8C29—C28—C27119.37 (11)
C18—N2—H2108.2C29—C28—H28A120.3
O1—C1—C2123.61 (10)C27—C28—H28A120.3
O1—C1—C6115.51 (10)C28—C29—C30120.93 (11)
C2—C1—C6120.88 (11)C28—C29—H29A119.5
C1—C2—C3119.30 (12)C30—C29—H29A119.5
C1—C2—H2A120.4C31—C30—C29119.08 (11)
C3—C2—H2A120.4C31—C30—H30A120.5
C4—C3—C2120.79 (12)C29—C30—H30A120.5
C4—C3—H3A119.6O5—C31—C30123.54 (10)
C2—C3—H3A119.6O5—C31—C26115.16 (10)
C3—C4—C5119.46 (12)C30—C31—C26121.30 (10)
C3—C4—H4A120.3O1—C32—H32A109.5
C5—C4—H4A120.3O1—C32—H32B109.5
C6—C5—C4121.27 (11)H32A—C32—H32B109.5
C6—C5—H5A119.4O1—C32—H32C109.5
C4—C5—H5A119.4H32A—C32—H32C109.5
C5—C6—C1118.28 (10)H32B—C32—H32C109.5
C5—C6—C7122.83 (10)O2—C33—H33A109.5
C1—C6—C7118.80 (10)O2—C33—H33B109.5
N1—C7—C6111.03 (8)H33A—C33—H33B109.5
N1—C7—C8108.04 (8)O2—C33—H33C109.5
C6—C7—C8112.91 (8)H33A—C33—H33C109.5
N1—C7—H7A108.2H33B—C33—H33C109.5
C6—C7—H7A108.2O4—C34—H34A109.5
C8—C7—H7A108.2O4—C34—H34B109.5
C9—C8—C7102.19 (8)H34A—C34—H34B109.5
C9—C8—C18111.09 (8)O4—C34—H34C109.5
C7—C8—C18112.34 (8)H34A—C34—H34C109.5
C9—C8—H8A110.3H34B—C34—H34C109.5
C7—C8—H8A110.3O5—C35—H35A109.5
C18—C8—H8A110.3O5—C35—H35B109.5
O3—C9—C8123.61 (10)H35A—C35—H35B109.5
O3—C9—C10124.45 (10)O5—C35—H35C109.5
C8—C9—C10111.46 (9)H35A—C35—H35C109.5
C9—C10—C11105.99 (8)H35B—C35—H35C109.5
C9—C10—C25109.83 (8)C36Ai—O6—C36A179.998 (4)
C11—C10—C25112.32 (8)C36A—O6—C38A137.5 (3)
C9—C10—H10A109.5C36Ai—O6—C38Ai137.5 (3)
C11—C10—H10A109.5C38A—O6—C38Ai179.998 (2)
C25—C10—H10A109.5C38Ai—C36A—O682.4 (6)
N1—C11—C12110.07 (9)O6—C36A—C37A121.7 (6)
N1—C11—C10109.79 (8)C38Ai—C36A—C39Ai73.3 (5)
C12—C11—C10110.10 (8)O6—C36A—C39Ai155.6 (5)
N1—C11—H11A109.0C38Ai—C36A—H36A130.7
C12—C11—H11A109.0O6—C36A—H36A106.9
C10—C11—H11A109.0C37A—C36A—H36A106.9
C13—C12—C17118.28 (10)C39Ai—C36A—H36A89.9
C13—C12—C11122.40 (10)C38Ai—C36A—H36B116.7
C17—C12—C11119.23 (10)O6—C36A—H36B106.9
C12—C13—C14121.41 (11)C37A—C36A—H36B106.9
C12—C13—H13A119.3C39Ai—C36A—H36B84.1
C14—C13—H13A119.3H36A—C36A—H36B106.7
C15—C14—C13119.40 (13)C39Ai—C37A—C38Ai109.9 (9)
C15—C14—H14A120.3C39Ai—C37A—C36A73.5 (7)
C13—C14—H14A120.3C38Ai—C37A—H37A146.8
C14—C15—C16120.65 (11)C36A—C37A—H37A109.5
C14—C15—H15A119.7C39Ai—C37A—H37B115.0
C16—C15—H15A119.7C38Ai—C37A—H37B84.2
C15—C16—C17119.66 (12)C36A—C37A—H37B109.5
C15—C16—H16A120.2H37A—C37A—H37B109.5
C17—C16—H16A120.2C39Ai—C37A—H37C131.3
O2—C17—C16124.34 (11)C38Ai—C37A—H37C93.1
O2—C17—C12115.09 (10)C36A—C37A—H37C109.5
C16—C17—C12120.57 (12)H37A—C37A—H37C109.5
N2—C18—C19111.18 (8)H37B—C37A—H37C109.5
N2—C18—C8112.77 (9)C36Ai—C38A—C37Ai102.1 (8)
C19—C18—C8111.73 (8)C36Ai—C38A—O655.1 (5)
N2—C18—H18A106.9C37Ai—C38A—O6155.5 (7)
C19—C18—H18A106.9C36Ai—C38A—C39A70.6 (5)
C8—C18—H18A106.9O6—C38A—C39A125.7 (4)
C20—C19—C24118.01 (10)C36Ai—C38A—H38A125.9
C20—C19—C18120.45 (10)C37Ai—C38A—H38A79.5
C24—C19—C18121.53 (10)O6—C38A—H38A105.9
C19—C20—C21121.53 (11)C39A—C38A—H38A105.9
C19—C20—H20A119.2C36Ai—C38A—H38B127.1
C21—C20—H20A119.2C37Ai—C38A—H38B95.0
C22—C21—C20119.34 (12)O6—C38A—H38B105.9
C22—C21—H21A120.3C39A—C38A—H38B105.9
C20—C21—H21A120.3H38A—C38A—H38B106.2
C21—C22—C23120.48 (11)C37Ai—C39A—C36Ai72.1 (7)
C21—C22—H22A119.8C37Ai—C39A—H39A74.0
C23—C22—H22A119.8C36Ai—C39A—H39A145.6
C22—C23—C24119.95 (11)C38A—C39A—H39A109.5
C22—C23—H23A120.0C37Ai—C39A—H39B133.4
C24—C23—H23A120.0C36Ai—C39A—H39B90.0
O4—C24—C23123.94 (10)C38A—C39A—H39B109.5
O4—C24—C19115.38 (10)H39A—C39A—H39B109.5
C23—C24—C19120.68 (11)C37Ai—C39A—H39C112.7
N2—C25—C26111.42 (8)C36Ai—C39A—H39C89.1
N2—C25—C10113.87 (8)C38A—C39A—H39C109.5
C26—C25—C10110.31 (9)H39A—C39A—H39C109.5
N2—C25—H25A106.9H39B—C39A—H39C109.5
C32—O1—C1—C213.03 (17)C7—C8—C18—C19114.20 (10)
C32—O1—C1—C6166.55 (11)N2—C18—C19—C20125.03 (11)
O1—C1—C2—C3179.41 (11)C8—C18—C19—C20108.00 (11)
C6—C1—C2—C31.03 (18)N2—C18—C19—C2455.84 (13)
C1—C2—C3—C40.4 (2)C8—C18—C19—C2471.13 (13)
C2—C3—C4—C50.8 (2)C24—C19—C20—C210.32 (17)
C3—C4—C5—C60.13 (18)C18—C19—C20—C21179.47 (11)
C4—C5—C6—C11.47 (16)C19—C20—C21—C220.40 (19)
C4—C5—C6—C7174.94 (10)C20—C21—C22—C230.3 (2)
O1—C1—C6—C5178.48 (10)C21—C22—C23—C240.59 (19)
C2—C1—C6—C51.92 (16)C34—O4—C24—C233.27 (17)
O1—C1—C6—C74.96 (14)C34—O4—C24—C19176.92 (10)
C2—C1—C6—C7174.64 (10)C22—C23—C24—O4178.47 (11)
C11—N1—C7—C6172.53 (9)C22—C23—C24—C191.33 (18)
C11—N1—C7—C863.14 (11)C20—C19—C24—O4178.64 (10)
C5—C6—C7—N119.29 (14)C18—C19—C24—O40.51 (15)
C1—C6—C7—N1157.11 (9)C20—C19—C24—C231.18 (16)
C5—C6—C7—C8102.23 (11)C18—C19—C24—C23179.67 (10)
C1—C6—C7—C881.38 (12)C18—N2—C25—C26175.83 (9)
N1—C7—C8—C964.88 (10)C18—N2—C25—C1050.28 (11)
C6—C7—C8—C9171.93 (9)C9—C10—C25—N25.95 (12)
N1—C7—C8—C1854.25 (11)C11—C10—C25—N2111.74 (9)
C6—C7—C8—C1868.94 (11)C9—C10—C25—C26120.19 (9)
C7—C8—C9—O3103.39 (11)C11—C10—C25—C26122.13 (9)
C18—C8—C9—O3136.60 (11)N2—C25—C26—C27121.40 (11)
C7—C8—C9—C1068.94 (10)C10—C25—C26—C27111.10 (11)
C18—C8—C9—C1051.06 (11)N2—C25—C26—C3162.18 (14)
O3—C9—C10—C11107.83 (12)C10—C25—C26—C3165.32 (13)
C8—C9—C10—C1164.43 (11)C31—C26—C27—C280.68 (18)
O3—C9—C10—C25130.62 (11)C25—C26—C27—C28177.21 (12)
C8—C9—C10—C2557.13 (11)C26—C27—C28—C290.2 (2)
C7—N1—C11—C12178.51 (8)C27—C28—C29—C300.8 (2)
C7—N1—C11—C1057.16 (11)C28—C29—C30—C310.5 (2)
C9—C10—C11—N154.43 (11)C35—O5—C31—C304.10 (18)
C25—C10—C11—N165.51 (11)C35—O5—C31—C26175.12 (11)
C9—C10—C11—C12175.76 (9)C29—C30—C31—O5178.70 (12)
C25—C10—C11—C1255.83 (11)C29—C30—C31—C260.47 (19)
N1—C11—C12—C1313.88 (14)C27—C26—C31—O5178.20 (10)
C10—C11—C12—C13107.29 (12)C25—C26—C31—O51.69 (16)
N1—C11—C12—C17169.67 (9)C27—C26—C31—C301.03 (17)
C10—C11—C12—C1769.17 (13)C25—C26—C31—C30177.55 (11)
C17—C12—C13—C140.85 (17)C38A—O6—C36A—C38Ai180.000 (7)
C11—C12—C13—C14175.64 (11)C38A—O6—C36A—C37A172.7 (5)
C12—C13—C14—C150.52 (18)C38Ai—O6—C36A—C37A7.3 (5)
C13—C14—C15—C160.91 (19)C38A—O6—C36A—C39Ai178.6 (11)
C14—C15—C16—C170.10 (19)C38Ai—O6—C36A—C39Ai1.4 (11)
C33—O2—C17—C1611.08 (17)C38Ai—C36A—C37A—C39Ai162.4 (11)
C33—O2—C17—C12169.62 (11)O6—C36A—C37A—C39Ai173.7 (7)
C15—C16—C17—O2177.76 (11)O6—C36A—C37A—C38Ai11.3 (7)
C15—C16—C17—C121.51 (17)C39Ai—C36A—C37A—C38Ai162.4 (11)
C13—C12—C17—O2177.47 (10)C36A—O6—C38A—C36Ai179.999 (10)
C11—C12—C17—O25.94 (15)C36Ai—O6—C38A—C37Ai23.4 (15)
C13—C12—C17—C161.86 (16)C36A—O6—C38A—C37Ai156.6 (15)
C11—C12—C17—C16174.74 (10)C36Ai—O6—C38A—C39A0.7 (5)
C25—N2—C18—C19176.88 (8)C36A—O6—C38A—C39A179.3 (5)
C25—N2—C18—C856.72 (11)C36Ai—C38A—C39A—C37Ai161.3 (11)
C9—C8—C18—N25.92 (11)O6—C38A—C39A—C37Ai161.9 (10)
C7—C8—C18—N2119.70 (9)C37Ai—C38A—C39A—C36Ai161.3 (11)
C9—C8—C18—C19132.02 (9)O6—C38A—C39A—C36Ai0.6 (5)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.872.192.8184 (13)129
N2—H2···O50.872.322.8936 (15)124
C4—H4A···N2ii0.932.603.470 (2)156
N1—H1···Cg1iii0.872.663.4167 (10)146
C34—H34C···Cg2iv0.962.703.5099 (16)143
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x, y+2, z+1; (iv) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC35H36N2O5·0.5C4H10O
Mr1203.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.5607 (2), 13.7640 (2), 20.3227 (3)
β (°) 123.143 (1)
V3)3176.10 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
49818, 11431, 8831
Rint0.035
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.144, 1.03
No. of reflections11431
No. of parameters426
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.87002.19002.8184 (13)129.00
N2—H2···O50.87002.32002.8936 (15)124.00
C4—H4A···N2i0.93002.60003.470 (2)156.00
N1—H1···Cg1ii0.87132.663.4167 (10)146.00
C34—H34C···Cg2iii0.96002.703.5099 (16)143.00
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+2, z+1; (iii) x+1, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship. VV is grateful to DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationArias-Perez, M. S., Alejo, A. & Maroto, A. (1997). Tetrahedron, 53, 13099–13110.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikrishna, A. & Vijayakumar, D. (1998). Tetrahedron Lett. 39, 5833–5834.  Web of Science CrossRef CAS Google Scholar
First citationVijayakumar, V., Sundaravadivelu, M., Perumal, S. & Hewlins, M. J. E. (2000). Magn. Reson. Chem. 38, 883–885.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2486-o2487
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds