organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RS)-3-Acetyl-2-methyl-4-(3-nitro­phen­yl)-1,4,5,6,7,8-hexa­hydro­quinolin-5-one

aDepartment of Chemistry, Kashgar Teachers' College, Kashgar 844000, People's Republic of China
*Correspondence e-mail: m_turhong@126.com,

(Received 14 September 2009; accepted 22 September 2009; online 26 September 2009)

In the title compound, C18H18N2O4, the nitro group, a methyl group, the acetyl group and some atoms of the dihydro­quinolinone group are disordered over two sites with the ratio of occupancies fixed at 0.57:0.43. The relationship between the major and minor components of disorder is that of diastereomers. In the crystal structure, inter­molecular N—H⋯O, weak C—H⋯O and C—H⋯π inter­actions link the mol­ecules into two-dimensional layers running parallel to the (010) plane.

Related literature

For the biological importance of polyhydro­quinoline derivatives, see: Ko & Yao (2006[Ko, S. K. & Yao, C. F. (2006). Tetrahedron, 62, 7293-7299.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O4

  • Mr = 326.34

  • Monoclinic, P 21 /n

  • a = 8.5368 (5) Å

  • b = 17.0307 (6) Å

  • c = 11.4759 (5) Å

  • β = 106.143 (1)°

  • V = 1602.67 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.990

  • 9050 measured reflections

  • 3151 independent reflections

  • 1611 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.149

  • S = 0.90

  • 3151 reflections

  • 325 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.868 (10) 2.063 (13) 2.927 (8) 173 (2)
C6—H6⋯O4i 0.93 2.56 3.309 (16) 138
C18—H18A⋯O1i 0.96 2.46 3.239 (18) 138
C18—H18B⋯O3i 0.96 2.57 3.422 (15) 148
C11—H11A⋯O1ii 0.97 2.55 3.290 (16) 133
C12—H12ACg1iii 0.97 2.76 3.71 (1) 166
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Many polyhydroquinoline derivatives have been synthesized because of their biological importance (Ko & and Yao). In this paper, we report the crystal structure of the title compound, (I).

In the title molecule (Fig. 1), the nitro group, C18 methyl group, the acetyl group and some atoms of the dihydroquinolin-one (i.e. atoms C9-C12/C16-C18/O3/O4) are disordered over two positions with final site occupancies of 0.57:0.43 for the major and minor components, respectively. The bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal structure, the molecules are first linked by one N2—H2A···O3 (-1/2+x,1/2-y,-1/2+z) hydrogen bond into a one-dimensional chain running parallel to the [101] direction (Table 1 and Fig. 2). These adjacent [101] chains are joined together by C11–H11A···O1 (x, y, -1+z) and C-H···π (C12···Cg1 =3.71 (1)Å, Cg1 is the centroid defined by atoms C1-C6 at (1/2+x,1/2-y,-1/2+z)) interactions, forming a two-dimensional layer structure running parallel to the (010) plane.

Related literature top

For the biological importance of polyhydroquinoline derivatives, see: Ko & Yao (2006). For bond-length data, see: Allen et al. (1987). Please check changes.

Experimental top

The title compound was synthesized according to a literature procedure (Ko & Yao, 2006). The product was recrystallized from ethyl acetate at room temperature to give block red crystals suitable for single-crystal X-ray diffraction.

Refinement top

In the refinement, the nitro group, C18 methyl group, acetyl group and some atoms of the dihydroquinolinone group (C9-C12/C16-C18/O3/O4) were modelled as disordered over two sites with the final site occupancies fixed at 0.57:0.43. Commands SADI and DFIX were used in the refinement to restrain some bond lengths. The relationship between the major and minor components of disorder is that of diastereomers.

All H atoms were visible in difference Fourier maps The N—H distance of H2A atom (for N4) was constrained to 0.86 (1) Å, while the displacement parameter of this atom was constrained with regard to its carrier atom: Uiso(H4A) = 1.2Ueq(N4). The remaining H atoms were placed in idealized positions, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aryl, methine, methylene and methyl groups, respectively, and Uiso(Haryl/methine/methylene) = 1.2Ueq(Caryl/methine/methylene) and Uiso(Hmethyl) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme, showing both the major (left) and minor (right) components. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing, showing the two-dimensional (010) layer. The weak hydrogen bonds and C—H···π interactions are shown as dashed lines. For the sake of clarity, the H atoms and disordered atoms not involved in the hydrogen-bonds pattern have been omitted.
(RS)-3-Acetyl-2-methyl-4-(3-nitrophenyl)-1,4,5,6,7,8- hexahydroquinolin-5-one top
Crystal data top
C18H18N2O4F(000) = 688
Mr = 326.34Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1160 reflections
a = 8.5368 (5) Åθ = 2.2–19.3°
b = 17.0307 (6) ŵ = 0.10 mm1
c = 11.4759 (5) ÅT = 298 K
β = 106.143 (1)°Block, yellow
V = 1602.67 (13) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3151 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
0.3° wide ω exposures scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.971, Tmax = 0.990k = 2114
9050 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0622P)2]
where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.34 e Å3
12 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H18N2O4V = 1602.67 (13) Å3
Mr = 326.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5368 (5) ŵ = 0.10 mm1
b = 17.0307 (6) ÅT = 298 K
c = 11.4759 (5) Å0.20 × 0.10 × 0.10 mm
β = 106.143 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3151 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1611 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.990Rint = 0.094
9050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06112 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.34 e Å3
3151 reflectionsΔρmin = 0.28 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2737 (3)0.20273 (14)0.3479 (2)0.0436 (6)
C20.3036 (3)0.18309 (15)0.4692 (2)0.0491 (7)
H20.39740.20110.52550.059*
C30.1941 (4)0.13684 (16)0.5063 (2)0.0543 (7)
C40.0532 (4)0.10958 (16)0.4267 (3)0.0615 (8)
H40.01970.07840.45320.074*
C50.0234 (3)0.12982 (17)0.3068 (3)0.0621 (8)
H50.07140.11230.25120.075*
C60.1317 (3)0.17567 (16)0.2676 (2)0.0526 (7)
H60.10890.18860.18580.063*
C70.3954 (3)0.25236 (15)0.3038 (2)0.0455 (7)
H70.49700.25470.36970.055*
C80.4336 (3)0.21449 (16)0.1960 (2)0.0474 (7)
C90.545 (5)0.151 (2)0.220 (2)0.053 (9)0.57
C100.5914 (19)0.1135 (11)0.1123 (15)0.075 (5)0.57
H10A0.61930.05870.12900.090*0.57
H10B0.68430.14020.09740.090*0.57
C110.4385 (8)0.1214 (3)0.0005 (4)0.0700 (17)0.57
H11A0.46590.09950.07040.084*0.57
H11B0.35150.08960.01390.084*0.57
C120.3717 (10)0.2063 (7)0.0331 (9)0.039 (2)0.57
H12A0.44510.23650.06680.047*0.57
H12B0.26510.20490.09180.047*0.57
O30.6237 (12)0.1317 (7)0.3215 (8)0.044 (2)0.57
C160.356 (2)0.3899 (17)0.3823 (18)0.052 (7)0.57
C170.2873 (9)0.4703 (5)0.3779 (6)0.0517 (18)0.57
H17A0.31140.49130.45860.077*0.57
H17B0.17120.46840.34320.077*0.57
H17C0.33490.50330.32900.077*0.57
C180.1732 (18)0.4344 (7)0.1111 (9)0.050 (3)0.57
H18A0.09210.44360.15320.076*0.57
H18B0.12100.42880.02590.076*0.57
H18C0.24730.47800.12400.076*0.57
O40.439 (3)0.3647 (9)0.4817 (13)0.103 (6)0.57
C9'0.368 (3)0.385 (2)0.378 (2)0.075 (14)0.43
C10'0.3390 (15)0.4734 (9)0.3478 (11)0.085 (4)0.43
H10C0.43150.49590.32620.102*0.43
H10D0.32240.50190.41650.102*0.43
C11'0.1799 (10)0.4766 (5)0.2359 (8)0.089 (3)0.43
H11C0.09190.44800.25500.107*0.43
H11D0.14560.53070.21840.107*0.43
C12'0.220 (3)0.4386 (9)0.1223 (14)0.067 (6)0.43
H12C0.12490.43910.05240.081*0.43
H12D0.30800.46650.10220.081*0.43
O3'0.414 (3)0.3620 (10)0.4820 (15)0.061 (4)0.43
C16'0.549 (7)0.146 (2)0.219 (3)0.047 (12)0.43
C17'0.566 (2)0.0938 (13)0.1187 (17)0.047 (4)0.43
H17D0.62190.12130.06960.071*0.43
H17E0.45920.07880.06980.071*0.43
H17F0.62610.04770.15220.071*0.43
C18'0.379 (2)0.1953 (11)0.0320 (13)0.105 (8)0.43
H18D0.49200.18270.02130.158*0.43
H18E0.34050.22740.10300.158*0.43
H18F0.31660.14770.04160.158*0.43
O4'0.608 (2)0.1250 (13)0.3267 (16)0.103 (6)0.43
C130.3612 (3)0.24079 (15)0.0812 (2)0.0454 (7)
C140.2679 (3)0.35884 (16)0.1597 (2)0.0505 (7)
C150.3347 (3)0.33563 (17)0.2754 (2)0.0517 (7)
N10.2306 (5)0.1151 (2)0.6349 (3)0.0779 (9)
N20.2681 (3)0.30700 (13)0.06613 (18)0.0510 (6)
H2A0.227 (3)0.3210 (14)0.0089 (11)0.061*
O10.370 (2)0.1286 (8)0.7031 (14)0.092 (3)0.57
O20.123 (4)0.0762 (16)0.668 (3)0.105 (6)0.57
O1'0.326 (3)0.1589 (11)0.7037 (19)0.098 (4)0.43
O2'0.159 (5)0.0643 (18)0.665 (3)0.098 (6)0.43
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (16)0.0500 (16)0.0340 (14)0.0065 (13)0.0109 (12)0.0020 (12)
C20.0530 (17)0.0575 (18)0.0384 (15)0.0020 (13)0.0151 (13)0.0041 (12)
C30.065 (2)0.0602 (19)0.0450 (17)0.0081 (15)0.0284 (15)0.0028 (14)
C40.062 (2)0.0566 (19)0.075 (2)0.0036 (15)0.0347 (17)0.0002 (16)
C50.0481 (18)0.074 (2)0.061 (2)0.0052 (15)0.0105 (15)0.0074 (16)
C60.0460 (17)0.0666 (19)0.0423 (16)0.0009 (14)0.0072 (13)0.0006 (13)
C70.0422 (15)0.0610 (19)0.0303 (14)0.0039 (13)0.0053 (11)0.0003 (12)
C80.0433 (16)0.0598 (19)0.0401 (16)0.0037 (14)0.0134 (12)0.0001 (13)
C90.045 (16)0.072 (13)0.039 (17)0.001 (11)0.008 (12)0.009 (10)
C100.085 (8)0.081 (10)0.064 (6)0.013 (5)0.031 (6)0.009 (6)
C110.107 (5)0.068 (4)0.030 (3)0.019 (3)0.011 (3)0.006 (3)
C120.039 (4)0.043 (5)0.039 (6)0.006 (3)0.018 (4)0.004 (4)
O30.043 (3)0.058 (4)0.024 (4)0.010 (3)0.000 (3)0.010 (3)
C160.058 (9)0.055 (12)0.042 (13)0.007 (8)0.014 (9)0.003 (9)
C170.058 (4)0.055 (4)0.042 (4)0.007 (4)0.014 (3)0.003 (3)
C180.054 (9)0.052 (5)0.047 (4)0.007 (4)0.016 (4)0.0003 (3)
O40.145 (11)0.097 (8)0.048 (8)0.009 (6)0.007 (6)0.007 (5)
C9'0.10 (2)0.059 (19)0.06 (2)0.018 (16)0.015 (17)0.007 (14)
C10'0.117 (10)0.078 (7)0.090 (8)0.001 (7)0.078 (7)0.007 (5)
C11'0.088 (6)0.067 (6)0.113 (7)0.018 (5)0.031 (6)0.001 (5)
C12'0.032 (8)0.058 (8)0.102 (10)0.009 (5)0.003 (6)0.003 (6)
O3'0.103 (7)0.045 (7)0.037 (9)0.001 (5)0.023 (7)0.023 (6)
C16'0.04 (2)0.060 (16)0.04 (2)0.004 (13)0.013 (17)0.000 (13)
C17'0.043 (6)0.060 (9)0.040 (6)0.004 (6)0.013 (5)0.000 (5)
C18'0.200 (16)0.076 (13)0.038 (10)0.021 (11)0.031 (9)0.005 (8)
O4'0.127 (12)0.105 (11)0.074 (10)0.036 (9)0.025 (8)0.020 (7)
C130.0477 (16)0.0515 (17)0.0376 (15)0.0011 (13)0.0132 (12)0.0012 (12)
C140.0536 (18)0.0520 (19)0.0470 (17)0.0070 (14)0.0160 (14)0.0003 (14)
C150.0582 (18)0.0552 (19)0.0418 (17)0.0071 (14)0.0143 (14)0.0034 (14)
N10.089 (3)0.091 (3)0.063 (2)0.003 (2)0.0351 (19)0.0093 (19)
N20.0605 (15)0.0587 (15)0.0303 (12)0.0057 (12)0.0068 (11)0.0025 (11)
O10.104 (7)0.126 (10)0.046 (3)0.004 (5)0.021 (4)0.016 (5)
O20.101 (9)0.130 (9)0.102 (7)0.017 (5)0.059 (5)0.030 (5)
O1'0.125 (13)0.115 (12)0.052 (5)0.003 (7)0.023 (7)0.003 (7)
O2'0.117 (17)0.104 (11)0.090 (8)0.015 (12)0.058 (9)0.044 (8)
Geometric parameters (Å, º) top
C1—C61.383 (3)C17—H17C0.9600
C1—C21.384 (3)C18—C141.540 (12)
C1—C71.530 (3)C18—H18A0.9600
C2—C31.378 (4)C18—H18B0.9600
C2—H20.9300C18—H18C0.9600
C3—C41.374 (4)C9'—O3'1.21 (3)
C3—N11.468 (4)C9'—C151.41 (3)
C4—C51.372 (4)C9'—C10'1.54 (4)
C4—H40.9300C10'—C11'1.590 (13)
C5—C61.378 (4)C10'—H10C0.9700
C5—H50.9300C10'—H10D0.9700
C6—H60.9300C11'—C12'1.575 (14)
C7—C81.509 (3)C11'—H11C0.9700
C7—C151.514 (4)C11'—H11D0.9700
C7—H70.9800C12'—C141.449 (14)
C8—C131.365 (3)C12'—H12C0.9700
C8—C91.41 (3)C12'—H12D0.9700
C8—C16'1.51 (3)C16'—O4'1.25 (3)
C9—O31.22 (2)C16'—C17'1.49 (3)
C9—C101.54 (3)C17'—H17D0.9600
C10—C111.567 (14)C17'—H17E0.9600
C10—H10A0.9700C17'—H17F0.9600
C10—H10B0.9700C18'—C131.558 (14)
C11—C121.562 (12)C18'—H18D0.9600
C11—H11A0.9700C18'—H18E0.9600
C11—H11B0.9700C18'—H18F0.9600
C12—C131.463 (10)C13—N21.362 (3)
C12—H12A0.9700C14—C151.350 (3)
C12—H12B0.9700C14—N21.391 (3)
C16—O41.24 (2)N1—O2'1.17 (3)
C16—C171.48 (3)N1—O1'1.22 (3)
C16—C151.51 (3)N1—O11.251 (19)
C17—H17A0.9600N1—O21.28 (2)
C17—H17B0.9600N2—H2A0.868 (10)
C6—C1—C2118.2 (2)C9'—C10'—C11'105.1 (13)
C6—C1—C7120.9 (2)C9'—C10'—H10C110.7
C2—C1—C7120.9 (2)C11'—C10'—H10C110.7
C3—C2—C1119.9 (2)C9'—C10'—H10D110.7
C3—C2—H2120.1C11'—C10'—H10D110.7
C1—C2—H2120.1H10C—C10'—H10D108.8
C4—C3—C2122.1 (3)C12'—C11'—C10'108.7 (10)
C4—C3—N1119.0 (3)C12'—C11'—H11C110.0
C2—C3—N1118.8 (3)C10'—C11'—H11C110.0
C5—C4—C3117.8 (3)C12'—C11'—H11D110.0
C5—C4—H4121.1C10'—C11'—H11D110.0
C3—C4—H4121.1H11C—C11'—H11D108.3
C4—C5—C6121.1 (3)C14—C12'—C11'104.4 (9)
C4—C5—H5119.5C14—C12'—H12C110.9
C6—C5—H5119.5C11'—C12'—H12C110.9
C5—C6—C1121.0 (3)C14—C12'—H12D110.9
C5—C6—H6119.5C11'—C12'—H12D110.9
C1—C6—H6119.5H12C—C12'—H12D108.9
C8—C7—C15111.3 (2)O4'—C16'—C17'120 (3)
C8—C7—C1110.9 (2)O4'—C16'—C8117 (3)
C15—C7—C1111.4 (2)C17'—C16'—C8122 (2)
C8—C7—H7107.7C16'—C17'—H17D109.5
C15—C7—H7107.7C16'—C17'—H17E109.5
C1—C7—H7107.7H17D—C17'—H17E109.5
C13—C8—C9122.5 (12)C16'—C17'—H17F109.5
C13—C8—C16'121.4 (13)H17D—C17'—H17F109.5
C13—C8—C7120.5 (3)H17E—C17'—H17F109.5
C9—C8—C7117.0 (12)C13—C18'—H18D109.5
C16'—C8—C7118.0 (13)C13—C18'—H18E109.5
O3—C9—C8124 (2)H18D—C18'—H18E109.5
O3—C9—C10117 (2)C13—C18'—H18F109.5
C8—C9—C10118.2 (17)H18D—C18'—H18F109.5
C9—C10—C11106.6 (18)H18E—C18'—H18F109.5
C9—C10—H10A110.4N2—C13—C8119.1 (2)
C11—C10—H10A110.4N2—C13—C12113.4 (5)
C9—C10—H10B110.4C8—C13—C12127.5 (5)
C11—C10—H10B110.4N2—C13—C18'119.7 (7)
H10A—C10—H10B108.6C8—C13—C18'121.2 (7)
C12—C11—C10116.2 (9)C15—C14—N2118.9 (3)
C12—C11—H11A108.2C15—C14—C12'125.0 (7)
C10—C11—H11A108.2N2—C14—C12'115.3 (7)
C12—C11—H11B108.2C15—C14—C18129.5 (4)
C10—C11—H11B108.2N2—C14—C18111.4 (4)
H11A—C11—H11B107.4C14—C15—C9'125.2 (13)
C13—C12—C11105.4 (6)C14—C15—C16122.9 (9)
C13—C12—H12A110.7C14—C15—C7120.8 (2)
C11—C12—H12A110.7C9'—C15—C7113.9 (13)
C13—C12—H12B110.7C16—C15—C7116.3 (9)
C11—C12—H12B110.7O2'—N1—O1'125 (2)
H12A—C12—H12B108.8O2'—N1—O1116 (2)
O4—C16—C17118 (2)O1'—N1—O2122.1 (19)
O4—C16—C15116 (2)O1—N1—O2123.1 (17)
C17—C16—C15125.6 (13)O1'—N1—C3114.4 (11)
C14—C18—H18A109.5O1—N1—C3118.8 (8)
C14—C18—H18B109.5O2—N1—C3117.7 (16)
C14—C18—H18C109.5C13—N2—C14123.6 (2)
O3'—C9'—C15124 (3)C13—N2—H2A114.5 (17)
O3'—C9'—C10'122 (3)C14—N2—H2A120.3 (17)
C15—C9'—C10'114.3 (19)
C6—C1—C2—C30.9 (4)C11—C12—C13—C816.2 (7)
C7—C1—C2—C3178.5 (2)C11'—C12'—C14—C1527.2 (16)
C1—C2—C3—C40.7 (4)C11'—C12'—C14—N2163.7 (8)
C1—C2—C3—N1178.4 (3)N2—C14—C15—C9'169.0 (11)
C2—C3—C4—C50.1 (4)C12'—C14—C15—C9'0.3 (15)
N1—C3—C4—C5179.0 (3)C18—C14—C15—C9'17.2 (13)
C3—C4—C5—C60.3 (4)N2—C14—C15—C16173.7 (7)
C4—C5—C6—C10.0 (4)C12'—C14—C15—C165.0 (13)
C2—C1—C6—C50.6 (4)C18—C14—C15—C1612.5 (11)
C7—C1—C6—C5178.8 (2)N2—C14—C15—C75.3 (4)
C6—C1—C7—C849.3 (3)C12'—C14—C15—C7174.1 (10)
C2—C1—C7—C8130.1 (2)C18—C14—C15—C7168.5 (7)
C6—C1—C7—C1575.2 (3)O3'—C9'—C15—C14173.2 (14)
C2—C1—C7—C15105.4 (3)C10'—C9'—C15—C146.7 (19)
C15—C7—C8—C1323.7 (3)C10'—C9'—C15—C7168.0 (10)
C1—C7—C8—C13100.9 (3)O4—C16—C15—C14170.3 (11)
C15—C7—C8—C9157 (2)C17—C16—C15—C149.1 (16)
C1—C7—C8—C979 (2)O4—C16—C15—C78.8 (15)
C15—C7—C8—C16'158 (3)C17—C16—C15—C7171.9 (9)
C1—C7—C8—C16'77 (3)C8—C7—C15—C1422.7 (3)
C13—C8—C9—O3172 (3)C1—C7—C15—C14101.6 (3)
C16'—C8—C9—O3137 (100)C8—C7—C15—C9'152.2 (10)
C7—C8—C9—O38 (5)C1—C7—C15—C9'83.5 (10)
C13—C8—C9—C103 (5)C8—C7—C15—C16156.4 (7)
C16'—C8—C9—C1053 (100)C1—C7—C15—C1679.3 (7)
C7—C8—C9—C10178 (2)C2—C3—N1—O2'165 (2)
O3—C9—C10—C11158 (3)C4—C3—N1—O1'158.8 (8)
C8—C9—C10—C1131 (4)C2—C3—N1—O1'22.1 (9)
C9—C10—C11—C1256 (2)C4—C3—N1—O1168.2 (7)
C10—C11—C12—C1348.0 (10)C2—C3—N1—O110.9 (8)
O3'—C9'—C10'—C11'141.3 (17)C4—C3—N1—O25.0 (15)
C15—C9'—C10'—C11'38.6 (16)C2—C3—N1—O2175.9 (15)
C9'—C10'—C11'—C12'67.2 (13)C8—C13—N2—C1413.6 (4)
C10'—C11'—C12'—C1460.0 (14)C12—C13—N2—C14165.8 (4)
C7—C8—C13—N27.2 (4)C18'—C13—N2—C14168.1 (8)
C7—C8—C13—C12173.5 (5)C15—C14—N2—C1314.6 (4)
C7—C8—C13—C18'171.1 (8)C12'—C14—N2—C13155.3 (9)
C11—C12—C13—N2164.5 (4)C18—C14—N2—C13170.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.87 (1)2.06 (1)2.927 (8)173 (2)
C6—H6···O4i0.932.563.309 (16)138
C18—H18A···O1i0.962.463.239 (18)138
C18—H18B···O3i0.962.573.422 (15)148
C11—H11A···O1ii0.972.553.290 (16)133
C12—H12A···Cg1iii0.972.763.71 (1)166
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z1; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H18N2O4
Mr326.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.5368 (5), 17.0307 (6), 11.4759 (5)
β (°) 106.143 (1)
V3)1602.67 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9050, 3151, 1611
Rint0.094
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.149, 0.90
No. of reflections3151
No. of parameters325
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.868 (10)2.063 (13)2.927 (8)173 (2)
C6—H6···O4i0.932.563.309 (16)138.3
C18—H18A···O1i0.962.463.239 (18)138.3
C18—H18B···O3i0.962.573.422 (15)148.3
C11—H11A···O1ii0.972.553.290 (16)133.3
C12—H12A···Cg1iii0.972.763.71 (1)166
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z1; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank Kashgar Teachers? College for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKo, S. K. & Yao, C. F. (2006). Tetrahedron, 62, 7293–7299.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds