organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2-Fluoro­benzyl­­idene)-2,2-di­methyl-1,3-dioxane-4,6-dione

aMicroScale Science Institute,Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroScale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 18 September 2009; accepted 25 September 2009; online 30 September 2009)

The title compound, C13H11FO4, was prepared by the reaction of 2,2-dimethyl-1,3-dioxane-4,6-dione and 2-fluoro­benzaldehyde in ethanol. In the crystal structure, mol­ecules are linked into chains by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the use of Meldrum's acid as a reagent in organic synthesis, see: Kuhn et al. (2003[Kuhn, N., Al-Sheikh, A. & Steimann, M. (2003). Z. Naturforsch. 58, 381-384.]); Casadesus et al. (2006[Casadesus, M., Coogan, M. P. & Ooi, L. L. (2006). Org. Biomol. Chem. 58, 3822-3830.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11FO4

  • Mr = 250.22

  • Triclinic, [P \overline 1]

  • a = 5.9907 (12) Å

  • b = 7.6135 (15) Å

  • c = 13.712 (3) Å

  • α = 104.66 (3)°

  • β = 97.00 (3)°

  • γ = 98.50 (3)°

  • V = 590.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 5846 measured reflections

  • 2680 independent reflections

  • 2232 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.122

  • S = 1.09

  • 2680 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.93 2.42 3.343 (4) 174
Symmetry code: (i) x-1, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Starting with its discovery and correct structural assignment, Meldrum's acid has become a widely used reagent in organic synthesis (Kuhn et al., 2003; Casadesus et al., 2006) owing to the interesting conformational features of the products. We report here the synthesis and structure of the title compound,(I) (Fig. 1). The crystal structure analysis confirms the structure of the title compound with atom C7 connected to the 1,3-dioxane ring via a C4-C7 single bond [1.464 (2)Å] and the phenyl ring via a C7C9 double bond [1.334 (2)Å]. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For background to the use of Meldrum's acid as a reagent in organic synthesis, see: Kuhn et al. (2003); Casadesus et al. (2006).

Experimental top

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, propan-2-one (3.48 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 2 h. The mixture was cooled and filtered, and then an ethanol solution of 2-fluorobenzaldehyde (7.67g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an petroleum ether-ethylacetate (2:1 v/v) solution of (I) at room temperature over a period of one week.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
5-(2-Fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C13H11FO4Z = 2
Mr = 250.22F(000) = 260
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9907 (12) ÅCell parameters from 2680 reflections
b = 7.6135 (15) Åθ = 3.1–27.5°
c = 13.712 (3) ŵ = 0.12 mm1
α = 104.66 (3)°T = 293 K
β = 97.00 (3)°Block, colorless
γ = 98.50 (3)°0.18 × 0.15 × 0.10 mm
V = 590.0 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
2232 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 77
5846 measured reflectionsk = 99
2680 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.0762P]
where P = (Fo2 + 2Fc2)/3
2680 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H11FO4γ = 98.50 (3)°
Mr = 250.22V = 590.0 (2) Å3
Triclinic, P1Z = 2
a = 5.9907 (12) ÅMo Kα radiation
b = 7.6135 (15) ŵ = 0.12 mm1
c = 13.712 (3) ÅT = 293 K
α = 104.66 (3)°0.18 × 0.15 × 0.10 mm
β = 97.00 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2232 reflections with I > 2σ(I)
5846 measured reflectionsRint = 0.015
2680 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
2680 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.24998 (15)0.52398 (12)0.08949 (6)0.0433 (2)
F0.21328 (14)0.74829 (12)0.22191 (7)0.0610 (3)
O30.42130 (16)0.39182 (13)0.21066 (7)0.0487 (2)
O20.19470 (18)0.81052 (13)0.13437 (7)0.0532 (3)
C100.22839 (19)0.67636 (17)0.16038 (9)0.0387 (3)
O10.5140 (2)0.54637 (16)0.37345 (8)0.0694 (4)
C40.0848 (2)0.93620 (17)0.35028 (9)0.0418 (3)
C110.2576 (2)0.35465 (17)0.11792 (9)0.0413 (3)
C70.2194 (2)0.78997 (18)0.34775 (9)0.0436 (3)
H7A0.27800.77900.41150.052*
C90.2713 (2)0.66953 (16)0.26804 (9)0.0390 (3)
C60.2546 (2)1.0510 (2)0.29876 (11)0.0521 (3)
H6A0.39671.03060.25780.063*
C50.1258 (2)0.91420 (18)0.29004 (9)0.0430 (3)
C80.4099 (2)0.53311 (18)0.29079 (10)0.0455 (3)
C30.1648 (3)1.1072 (2)0.42261 (11)0.0547 (4)
H3A0.30341.12610.46600.066*
C130.3522 (3)0.2316 (2)0.03544 (11)0.0592 (4)
H13A0.50070.29230.03010.089*
H13B0.25160.20580.02860.089*
H13C0.36490.11790.05200.089*
C20.0417 (3)1.2483 (2)0.43080 (12)0.0613 (4)
H2A0.10041.36270.47750.074*
C10.1683 (3)1.2195 (2)0.36964 (12)0.0582 (4)
H1A0.25221.31410.37620.070*
C120.0242 (3)0.2714 (2)0.13214 (12)0.0566 (4)
H12A0.02660.35640.18560.085*
H12B0.03170.15830.15030.085*
H12C0.08150.24620.06960.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0517 (5)0.0425 (5)0.0385 (4)0.0132 (4)0.0100 (4)0.0124 (4)
F0.0480 (5)0.0557 (5)0.0669 (5)0.0051 (4)0.0003 (4)0.0021 (4)
O30.0514 (5)0.0451 (5)0.0475 (5)0.0221 (4)0.0027 (4)0.0065 (4)
O20.0690 (6)0.0492 (5)0.0510 (5)0.0235 (5)0.0113 (4)0.0233 (4)
C100.0364 (5)0.0409 (6)0.0410 (6)0.0114 (5)0.0064 (5)0.0129 (5)
O10.0878 (8)0.0677 (7)0.0492 (6)0.0420 (6)0.0159 (5)0.0068 (5)
C40.0452 (6)0.0436 (7)0.0389 (6)0.0171 (5)0.0077 (5)0.0103 (5)
C110.0442 (6)0.0387 (6)0.0402 (6)0.0099 (5)0.0034 (5)0.0098 (5)
C70.0463 (6)0.0461 (7)0.0387 (6)0.0170 (5)0.0013 (5)0.0100 (5)
C90.0390 (6)0.0393 (6)0.0394 (6)0.0128 (5)0.0017 (5)0.0114 (5)
C60.0409 (6)0.0620 (9)0.0593 (8)0.0191 (6)0.0085 (6)0.0218 (7)
C50.0411 (6)0.0440 (7)0.0440 (6)0.0089 (5)0.0080 (5)0.0110 (5)
C80.0485 (7)0.0431 (7)0.0441 (6)0.0183 (5)0.0014 (5)0.0092 (5)
C30.0550 (8)0.0542 (8)0.0479 (7)0.0200 (6)0.0012 (6)0.0007 (6)
C130.0701 (9)0.0534 (8)0.0528 (8)0.0230 (7)0.0137 (7)0.0042 (6)
C20.0728 (10)0.0465 (8)0.0605 (8)0.0221 (7)0.0086 (7)0.0022 (6)
C10.0653 (9)0.0537 (8)0.0661 (9)0.0319 (7)0.0188 (7)0.0200 (7)
C120.0525 (8)0.0538 (8)0.0599 (8)0.0008 (6)0.0093 (6)0.0155 (6)
Geometric parameters (Å, º) top
O4—C101.3460 (15)C9—C81.4904 (17)
O4—C111.4434 (15)C6—C51.3753 (19)
F—C51.3529 (16)C6—C11.381 (2)
O3—C81.3457 (16)C6—H6A0.9300
O3—C111.4460 (15)C3—C21.380 (2)
O2—C101.1996 (15)C3—H3A0.9300
C10—C91.4826 (16)C13—H13A0.9600
O1—C81.1979 (16)C13—H13B0.9600
C4—C51.3843 (18)C13—H13C0.9600
C4—C31.3978 (19)C2—C11.379 (2)
C4—C71.4639 (17)C2—H2A0.9300
C11—C131.5018 (18)C1—H1A0.9300
C11—C121.5041 (19)C12—H12A0.9600
C7—C91.3385 (17)C12—H12B0.9600
C7—H7A0.9300C12—H12C0.9600
C10—O4—C11119.32 (9)C6—C5—C4123.07 (13)
C8—O3—C11118.75 (9)O1—C8—O3119.85 (12)
O2—C10—O4119.30 (11)O1—C8—C9124.13 (12)
O2—C10—C9124.62 (11)O3—C8—C9115.98 (11)
O4—C10—C9115.80 (10)C2—C3—C4121.18 (14)
C5—C4—C3116.79 (12)C2—C3—H3A119.4
C5—C4—C7124.51 (12)C4—C3—H3A119.4
C3—C4—C7118.56 (12)C11—C13—H13A109.5
O4—C11—O3109.41 (10)C11—C13—H13B109.5
O4—C11—C13106.34 (11)H13A—C13—H13B109.5
O3—C11—C13106.18 (11)C11—C13—H13C109.5
O4—C11—C12110.47 (11)H13A—C13—H13C109.5
O3—C11—C12110.71 (11)H13B—C13—H13C109.5
C13—C11—C12113.52 (12)C1—C2—C3119.93 (14)
C9—C7—C4130.10 (11)C1—C2—H2A120.0
C9—C7—H7A114.9C3—C2—H2A120.0
C4—C7—H7A114.9C2—C1—C6120.39 (13)
C7—C9—C10125.14 (11)C2—C1—H1A119.8
C7—C9—C8117.26 (11)C6—C1—H1A119.8
C10—C9—C8117.09 (10)C11—C12—H12A109.5
C5—C6—C1118.59 (13)C11—C12—H12B109.5
C5—C6—H6A120.7H12A—C12—H12B109.5
C1—C6—H6A120.7C11—C12—H12C109.5
F—C5—C6118.32 (12)H12A—C12—H12C109.5
F—C5—C4118.57 (12)H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.423.343 (4)174
C7—H7A···O10.932.422.798 (2)104
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H11FO4
Mr250.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.9907 (12), 7.6135 (15), 13.712 (3)
α, β, γ (°)104.66 (3), 97.00 (3), 98.50 (3)
V3)590.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.18 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5846, 2680, 2232
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.122, 1.09
No. of reflections2680
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.423.343 (4)174
Symmetry code: (i) x1, y+1, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasadesus, M., Coogan, M. P. & Ooi, L. L. (2006). Org. Biomol. Chem. 58, 3822–3830.  Web of Science CSD CrossRef Google Scholar
First citationKuhn, N., Al-Sheikh, A. & Steimann, M. (2003). Z. Naturforsch. 58, 381–384.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds