organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl-N-(3-phenyl­prop-2-yn­yl)aniline

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: leileitaotao6666@163.com

(Received 29 April 2009; accepted 18 September 2009; online 26 September 2009)

In the title compound, C21H17N, synthesized by a three-component coupling reaction in the presence of copper(I) iodide, the N-bound phenyl rings form a dihedral angle of 72.5 (1)° with each other. Thereare no remarkable inter­actions in the crystal structure.

Related literature

For the preparation of the title compound, see: Nilsson et al. (1992[Nilsson, B. M., Vargas, H. M., Ringdahl, B. & Hacksell, U. (1992). J. Med. Chem. 35, 285-294.]). For the biological activity of propargylamines and their use as synthetic inter­mediates, see: Bieber & da Silva (2004[Bieber, L. W. & da Silva, M. F. (2004). Tetrahedron Lett. 45, 8281-8283.]); Hattori et al. (1993[Hattori, K., Miyata, M. & Yamamoto, H. (1993). J. Am. Chem. Soc. 115, 1151-1152.]); Huffman et al. (1995[Huffman, M. A., Yasuda, N., DeCamp, A. E. & Grabowski, E. J. J. (1995). J. Org. Chem. 60, 1590-1594.]); Konishi et al. (1990[Konishi, M., Ohkuma, H., Tsuno, T., Oki, T., VanDuyne, G. D. & Clardy, J. (1990). J. Am. Chem. Soc. 112, 3715-3716.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N

  • Mr = 283.36

  • Monoclinic, P 21

  • a = 11.376 (1) Å

  • b = 5.7287 (5) Å

  • c = 13.409 (1) Å

  • β = 111.276 (3)°

  • V = 814.30 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.23 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 5689 measured reflections

  • 1953 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.136

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.141

  • S = 0.91

  • 1953 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (12001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (12001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Propargylamines are compounds of interesting biological properties and important synthetic intermediates (Konishi et al., 1990; Huffman et al., 1995; Hattori et al., 1993; Bieber et al., 2004). The reaction which a three component procedure between terminal alkynes, formaldehyde and secondary amines has been extended to some less activated alkynes by the introduction of copper catalysts. Here we report the crystal structure of the title compound (Fig. 1).

In the molecule of the title compound, the N-bound two phenyl rings form a dihedral angle of 72.5 (1)° with each other.

Related literature top

For the preparation of the title compound, see: Nilsson et al. (1992). For the biological activity of propargylamines and their use as synthetic intermediates, see: Bieber & da Silva (2004); Hattori et al. (1993); Huffman et al. (1995); Konishi et al. (1990).

Experimental top

The title compound was synthesized according to the literature procedure of Nilsson et al. (1992). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform : methanol (50 : 1) at room temperature.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C–H = 0.97 Å) and Uiso(H) =1.2 Ueq(C) for methylene, and (C–H = 0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.
N-Phenyl-N-(3-phenylprop-2-ynyl)aniline top
Crystal data top
C21H17NF(000) = 300
Mr = 283.36Dx = 1.156 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1607 reflections
a = 11.376 (1) Åθ = 2.9–22.6°
b = 5.7287 (5) ŵ = 0.07 mm1
c = 13.409 (1) ÅT = 298 K
β = 111.276 (3)°Block, colorless
V = 814.30 (12) Å30.23 × 0.13 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1448 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.136
Graphite monochromatorθmax = 27.0°, θmin = 1.6°
Detector resolution: 10.0 pixels mm-1h = 1314
ϕ and ω scansk = 77
5689 measured reflectionsl = 1710
1953 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: difference Fourier map
wR(F2) = 0.141H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.074P)2]
where P = (Fo2 + 2Fc2)/3
1953 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C21H17NV = 814.30 (12) Å3
Mr = 283.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.376 (1) ŵ = 0.07 mm1
b = 5.7287 (5) ÅT = 298 K
c = 13.409 (1) Å0.23 × 0.13 × 0.10 mm
β = 111.276 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1448 reflections with I > 2σ(I)
5689 measured reflectionsRint = 0.136
1953 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.141H-atom parameters constrained
S = 0.91Δρmax = 0.15 e Å3
1953 reflectionsΔρmin = 0.19 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2341 (2)0.1972 (5)0.3674 (2)0.0541 (7)
C20.1912 (3)0.1537 (7)0.4505 (2)0.0716 (9)
H20.12550.24200.45650.086*
C30.2457 (4)0.0199 (7)0.5240 (3)0.0859 (11)
H30.21580.04660.57890.103*
C40.3427 (3)0.1539 (8)0.5183 (3)0.0870 (11)
H40.37900.26950.56880.104*
C50.3851 (3)0.1131 (7)0.4356 (3)0.0775 (9)
H50.45000.20390.42980.093*
C60.3327 (2)0.0596 (6)0.3619 (2)0.0606 (7)
H60.36350.08530.30740.073*
C70.1821 (2)0.3552 (4)0.1865 (2)0.0473 (6)
C80.1297 (2)0.1628 (5)0.1253 (2)0.0555 (7)
H80.09800.04200.15460.067*
C90.1235 (3)0.1472 (6)0.0206 (2)0.0646 (8)
H90.08850.01580.02010.078*
C100.1692 (3)0.3265 (6)0.0233 (2)0.0651 (8)
H100.16570.31670.09360.078*
C110.2198 (3)0.5184 (6)0.0370 (3)0.0690 (8)
H110.24960.64070.00720.083*
C120.2273 (3)0.5334 (5)0.1416 (2)0.0606 (7)
H120.26320.66450.18210.073*
C130.0902 (3)0.5331 (5)0.3057 (2)0.0637 (7)
H13A0.08430.67190.26270.076*
H13B0.11660.58170.37990.076*
C140.0356 (3)0.4259 (6)0.2741 (2)0.0611 (7)
C150.1346 (3)0.3302 (6)0.2484 (2)0.0627 (7)
C160.2554 (3)0.2165 (6)0.2187 (2)0.0589 (7)
C170.2702 (4)0.0104 (7)0.2656 (3)0.0808 (9)
H170.20100.06040.31700.097*
C180.3885 (5)0.0912 (9)0.2361 (4)0.1097 (16)
H180.39900.22960.26810.132*
C190.4903 (5)0.0132 (13)0.1594 (5)0.1160 (19)
H190.56970.05480.13970.139*
C200.4753 (3)0.2131 (11)0.1130 (4)0.1032 (15)
H200.54460.28170.06070.124*
C210.3604 (3)0.3163 (7)0.1413 (3)0.0760 (9)
H210.35180.45510.10860.091*
N10.1865 (2)0.3795 (4)0.29364 (18)0.0548 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0509 (14)0.0643 (16)0.0386 (12)0.0118 (12)0.0061 (10)0.0006 (13)
C20.0736 (18)0.092 (2)0.0501 (16)0.0029 (18)0.0231 (14)0.0022 (17)
C30.094 (2)0.114 (3)0.0463 (16)0.006 (2)0.0216 (17)0.0205 (19)
C40.082 (2)0.101 (3)0.061 (2)0.004 (2)0.0065 (17)0.026 (2)
C50.0654 (18)0.086 (2)0.0677 (19)0.0086 (16)0.0085 (15)0.0125 (19)
C60.0503 (14)0.0747 (19)0.0496 (15)0.0017 (14)0.0096 (12)0.0065 (14)
C70.0430 (12)0.0519 (14)0.0453 (13)0.0001 (11)0.0139 (10)0.0052 (12)
C80.0564 (15)0.0556 (16)0.0488 (14)0.0085 (12)0.0120 (11)0.0017 (13)
C90.0681 (18)0.0638 (18)0.0508 (15)0.0011 (14)0.0082 (13)0.0048 (14)
C100.0657 (17)0.083 (2)0.0476 (15)0.0153 (16)0.0216 (13)0.0090 (16)
C110.0769 (19)0.0682 (19)0.071 (2)0.0052 (16)0.0381 (16)0.0152 (18)
C120.0650 (16)0.0546 (15)0.0655 (18)0.0137 (14)0.0275 (13)0.0015 (15)
C130.0715 (18)0.0593 (16)0.0621 (17)0.0007 (15)0.0265 (14)0.0023 (15)
C140.0622 (17)0.0729 (18)0.0523 (15)0.0082 (15)0.0257 (13)0.0003 (15)
C150.0634 (17)0.080 (2)0.0490 (15)0.0096 (16)0.0252 (13)0.0016 (15)
C160.0642 (17)0.0692 (19)0.0500 (15)0.0063 (14)0.0288 (13)0.0089 (15)
C170.092 (2)0.082 (2)0.072 (2)0.0031 (19)0.0344 (18)0.008 (2)
C180.141 (4)0.102 (3)0.112 (4)0.045 (3)0.077 (4)0.033 (3)
C190.087 (3)0.168 (5)0.110 (4)0.052 (3)0.055 (3)0.059 (4)
C200.060 (2)0.149 (5)0.097 (3)0.002 (2)0.024 (2)0.029 (3)
C210.0680 (19)0.085 (2)0.074 (2)0.0091 (17)0.0248 (16)0.0135 (18)
N10.0555 (12)0.0624 (13)0.0476 (12)0.0017 (10)0.0201 (10)0.0001 (11)
Geometric parameters (Å, º) top
C1—C21.391 (4)C11—C121.377 (4)
C1—C61.395 (4)C11—H110.9300
C1—N11.405 (4)C12—H120.9300
C2—C31.378 (5)C13—N11.459 (3)
C2—H20.9300C13—C141.471 (4)
C3—C41.368 (5)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.379 (5)C14—C151.185 (4)
C4—H40.9300C15—C161.441 (5)
C5—C61.372 (5)C16—C171.377 (5)
C5—H50.9300C16—C211.390 (4)
C6—H60.9300C17—C181.386 (6)
C7—C81.374 (4)C17—H170.9300
C7—C121.377 (4)C18—C191.376 (8)
C7—N11.425 (3)C18—H180.9300
C8—C91.383 (4)C19—C201.344 (7)
C8—H80.9300C19—H190.9300
C9—C101.377 (5)C20—C211.358 (5)
C9—H90.9300C20—H200.9300
C10—C111.362 (5)C21—H210.9300
C10—H100.9300
C2—C1—C6117.6 (3)C7—C12—C11120.3 (3)
C2—C1—N1122.7 (3)C7—C12—H12119.8
C6—C1—N1119.6 (2)C11—C12—H12119.8
C3—C2—C1120.2 (3)N1—C13—C14114.0 (2)
C3—C2—H2119.9N1—C13—H13A108.7
C1—C2—H2119.9C14—C13—H13A108.7
C4—C3—C2121.8 (3)N1—C13—H13B108.7
C4—C3—H3119.1C14—C13—H13B108.7
C2—C3—H3119.1H13A—C13—H13B107.6
C3—C4—C5118.3 (3)C15—C14—C13177.1 (3)
C3—C4—H4120.9C14—C15—C16178.9 (3)
C5—C4—H4120.9C17—C16—C21118.7 (3)
C6—C5—C4120.9 (3)C17—C16—C15121.6 (3)
C6—C5—H5119.5C21—C16—C15119.7 (3)
C4—C5—H5119.5C16—C17—C18119.8 (4)
C5—C6—C1121.1 (3)C16—C17—H17120.1
C5—C6—H6119.5C18—C17—H17120.1
C1—C6—H6119.5C19—C18—C17119.9 (5)
C8—C7—C12118.9 (2)C19—C18—H18120.1
C8—C7—N1122.0 (2)C17—C18—H18120.1
C12—C7—N1119.1 (2)C20—C19—C18120.2 (4)
C7—C8—C9120.6 (3)C20—C19—H19119.9
C7—C8—H8119.7C18—C19—H19119.9
C9—C8—H8119.7C19—C20—C21120.8 (4)
C10—C9—C8119.9 (3)C19—C20—H20119.6
C10—C9—H9120.1C21—C20—H20119.6
C8—C9—H9120.1C20—C21—C16120.6 (4)
C11—C10—C9119.5 (3)C20—C21—H21119.7
C11—C10—H10120.3C16—C21—H21119.7
C9—C10—H10120.3C1—N1—C7120.1 (2)
C10—C11—C12120.8 (3)C1—N1—C13118.9 (2)
C10—C11—H11119.6C7—N1—C13114.6 (2)
C12—C11—H11119.6
C6—C1—C2—C30.1 (4)C14—C15—C16—C2190 (18)
N1—C1—C2—C3176.6 (3)C21—C16—C17—C180.8 (4)
C1—C2—C3—C40.1 (5)C15—C16—C17—C18178.9 (3)
C2—C3—C4—C50.6 (6)C16—C17—C18—C190.6 (5)
C3—C4—C5—C60.9 (6)C17—C18—C19—C200.1 (6)
C4—C5—C6—C10.8 (5)C18—C19—C20—C210.6 (6)
C2—C1—C6—C50.2 (4)C19—C20—C21—C160.4 (6)
N1—C1—C6—C5177.1 (3)C17—C16—C21—C200.3 (5)
C12—C7—C8—C90.6 (4)C15—C16—C21—C20179.3 (3)
N1—C7—C8—C9178.2 (2)C2—C1—N1—C7148.9 (3)
C7—C8—C9—C100.5 (4)C6—C1—N1—C734.4 (3)
C8—C9—C10—C110.2 (4)C2—C1—N1—C131.4 (4)
C9—C10—C11—C121.0 (4)C6—C1—N1—C13175.3 (3)
C8—C7—C12—C110.1 (4)C8—C7—N1—C150.4 (3)
N1—C7—C12—C11177.5 (3)C12—C7—N1—C1132.0 (3)
C10—C11—C12—C70.9 (4)C8—C7—N1—C13101.1 (3)
N1—C13—C14—C159 (6)C12—C7—N1—C1376.4 (3)
C13—C14—C15—C16136 (16)C14—C13—N1—C174.1 (3)
C14—C15—C16—C1789 (18)C14—C13—N1—C777.8 (3)

Experimental details

Crystal data
Chemical formulaC21H17N
Mr283.36
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)11.376 (1), 5.7287 (5), 13.409 (1)
β (°) 111.276 (3)
V3)814.30 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.23 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5689, 1953, 1448
Rint0.136
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.141, 0.91
No. of reflections1953
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is grateful to Central China Normal University for support.

References

First citationBieber, L. W. & da Silva, M. F. (2004). Tetrahedron Lett. 45, 8281–8283.  Web of Science CrossRef CAS Google Scholar
First citationBruker (12001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHattori, K., Miyata, M. & Yamamoto, H. (1993). J. Am. Chem. Soc. 115, 1151–1152.  CrossRef CAS Web of Science Google Scholar
First citationHuffman, M. A., Yasuda, N., DeCamp, A. E. & Grabowski, E. J. J. (1995). J. Org. Chem. 60, 1590–1594.  CrossRef CAS Web of Science Google Scholar
First citationKonishi, M., Ohkuma, H., Tsuno, T., Oki, T., VanDuyne, G. D. & Clardy, J. (1990). J. Am. Chem. Soc. 112, 3715–3716.  CSD CrossRef CAS Web of Science Google Scholar
First citationNilsson, B. M., Vargas, H. M., Ringdahl, B. & Hacksell, U. (1992). J. Med. Chem. 35, 285–294.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds