organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2464-o2465

6-Benzyl-3,4-dimeth­­oxy-10-methyl­pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-one

aInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany, and bBioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
*Correspondence e-mail: meindl@shelx.uni-ac.gwdg.de

(Received 13 May 2009; accepted 4 September 2009; online 12 September 2009)

Pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones such as the title compound, C24H21N3O3, can be obtained in a few minutes in a microwave-assisted three-component reaction from 2-amino­pyridines, isocyanides and 2-carboxy­benz­aldehydes. In the title compound, the pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-one ring system is almost planar (mean deviation 0.068 Å). The dihedral angle between the benzyl ring and the pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-one ring system is 78.2°. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For the biological activity of fused imidazo[1,2-a]heterocycles, see: Almirante et al. (1965[Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305-312.]); Gueiffier et al. (1998[Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J.-P. (1998). J. Med. Chem. 41, 5108-5112.]); Sanfilippo et al. (1988[Sanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221-2227.]); Varma & Kumar (1999[Varma, R. S. & Kumar, D. (1999). Tetrahedron Lett. 40, 7665-7669.]). This heterocyclic structure element is present in drugs such as alpidem (anxiolytic), zolpidem (hypnotic) and zolimidine (anti­ulcer), see: Meng et al. (2007[Meng, T., Zhang, Z., Hu, D., Lin, L., Ding, J., Wang, X. & Shen, J. (2007). J. Comb. Chem. 9, 739-741.]). For the synthesis of pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones by the microwave-assisted three-component reaction of 2-amino­pyridines, isocyanides and 2-carboxy­benzaldehydes, see: Mert-Balci et al. (2008[Mert-Balci, F., Conrad, J., Meindl, K., Schulz, T., Stalke, D. & Beifuss, U. (2008). Synthesis, pp. 3649-3656.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21N3O3

  • Mr = 399.44

  • Monoclinic, P 21

  • a = 8.3650 (17) Å

  • b = 7.0500 (14) Å

  • c = 15.983 (3) Å

  • β = 92.27 (3)°

  • V = 941.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.981

  • 16260 measured reflections

  • 4479 independent reflections

  • 4383 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.06

  • 4479 reflections

  • 274 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1895 Friedel pairs

  • Flack parameter: 0.2 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N1i 0.95 2.68 3.4126 (16) 134
C18—H18A⋯O1ii 0.95 2.36 3.1127 (16) 136
C19—H19A⋯O1iii 0.95 2.58 3.3840 (16) 142
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The fused imidazo[1,2-a]heterocycles have proven to be successful in the field of medicinal chemistry. They show important biological activities like antibacterial, antiviral, antifungal and anti-inflammatory properties (Gueiffier et al., 1998, Almirante et al., 1965, Varma & Kumar, 1999, Sanfilippo et al., 1988). This heterocyclic structure element is present in drugs like alpidem (anxiolytic), zolpidem (hypnotic) and zolimidine (antiulcer) (Meng et al., 2007). Recently, pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones, incorporating an imidazopyridine backbone, have been reported to exhibit potent antitumor activity in vitro (Meng et al., 2007).

Pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones can be readily synthesized by the three-component reaction between 2-aminopyridines, isocyanides and 2-carboxybenzaldehydes under acidic conditions with the use of microwaves within a few minutes (Mert-Balci et al., 2008). The title compound (Fig. 1) was obtained from the corresponding compounds under similar conditions (Fig. 3). The pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one ring system is almost planar with a mean deviation from the plane of 0.0681 Å. The dihedral angle between the benzyl ring and the pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one ring system is 78.2°. The molecules are hydrogen-bonded through hydrogen atoms at the benzyl carbon atoms C18 and C19, respectively, acting as donors towards the carbonyl oxygen atom O1 in different symmetry equivalent molecules, and by the hydrogen atom at C5 donating towards the imidazole nitrogen atom N1 (Fig. 2), thus forming a 3-dimensional network.

Related literature top

For the biological activity of fused imidazo[1,2-a]heterocycles, see: Almirante et al. (1965); Gueiffier et al. (1998); Sanfilippo et al. (1988); Varma & Kumar (1999). This heterocyclic structure element is present in drugs such as alpidem (anxiolytic), zolpidem (hypnotic) and zolimidine (antiulcer), see: Meng et al. (2007). For the synthesis of pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones by the microwave-assisted three-component reaction of 2-aminopyridines, isocyanides and 2-carboxybenzaldehydes, see: Mert-Balci et al. (2008).

Experimental top

1 (1 mmol), 2 (1.09 mmol) and 3 (2.25 mmol) were suspended in toluene (2 ml) and placed in a 10 ml reaction vial that had been heated and cooled under argon. After the addition of MsOH (0.2 mmol), the vial was sealed with a septum and irradiated with microwaves (Discover by CEM; 2450 MHz; 300 W) at 160 °C for 7 min. The reaction mixture was allowed to cool to room temperature, diluted with CH2Cl2 (100 ml), and then washed with NaHCO3 solution (2 × 100 ml). The residue obtained after drying the organic phase over MgSO4 and concentration in vacuo was purified by column chromatography on silica gel (EtOAc) to yield the title compound 4 (yield 23%, m.p. 245–247°C). Crystallization from ethyl acetate provided suitable crystals of 4 for X-ray crystal structure analysis.

Refinement top

H atoms bonded to C atoms were placed at calculated positions and refined using a riding model. The constrained C—H distances were 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene H atoms, respectively. The Uiso(H) values were set at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

The absolute structure was confirmed by the method of Parsons' Q-values, which yielded an absolute structure parameter of 0.02 (18) (Parsons & Flack, 2004), and by a Hooft y parameter of -0.08 (16) (Hooft et al., 2008).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Hydrogen network in the crystal packing of the title compound. For clarity only H atoms involved in hydrogen bonds are shown. [Symmetry codes: (i) - x, y - 1/2, - z + 2; (ii) -x + 1, y + 1/2, - z + 1; (iii) x + 1, y, z; (iv) x - 1, y, z; (v) -x, y + 1/2, - z + 2; (vi) - x + 1, y - 1/2, - z + 1.]
[Figure 3] Fig. 3. Microwave-assisted synthesis of the title compound.
6-Benzyl-3,4-dimethoxy-9-methylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one top
Crystal data top
C24H21N3O3F(000) = 420
Mr = 399.44Dx = 1.408 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6111 reflections
a = 8.3650 (17) Åθ = 2.7–28.4°
b = 7.0500 (14) ŵ = 0.10 mm1
c = 15.983 (3) ÅT = 100 K
β = 92.27 (3)°Block, orange
V = 941.8 (3) Å30.35 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
4479 independent reflections
Radiation source: fine-focus sealed tube4383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.3333 pixels mm-1θmax = 28.5°, θmin = 2.4°
ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 99
Tmin = 0.965, Tmax = 0.981l = 2121
16260 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.1311P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4479 reflectionsΔρmax = 0.23 e Å3
274 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (6)
Crystal data top
C24H21N3O3V = 941.8 (3) Å3
Mr = 399.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.3650 (17) ŵ = 0.10 mm1
b = 7.0500 (14) ÅT = 100 K
c = 15.983 (3) Å0.35 × 0.20 × 0.20 mm
β = 92.27 (3)°
Data collection top
Bruker APEXII
diffractometer
4479 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4383 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.981Rint = 0.021
16260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.23 e Å3
S = 1.06Δρmin = 0.20 e Å3
4479 reflectionsAbsolute structure: Flack (1983)
274 parametersAbsolute structure parameter: 0.2 (6)
1 restraint
Special details top

Experimental. Intensities were measured with a Bruker APEX II area detector

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10209 (10)0.19983 (13)0.60571 (5)0.02146 (17)
O20.00203 (10)0.51480 (13)0.68116 (5)0.02068 (17)
O30.16121 (10)0.64479 (12)0.80584 (5)0.02256 (18)
N10.16148 (11)0.18429 (14)0.89977 (6)0.0188 (2)
N20.28372 (11)0.29948 (15)0.78537 (6)0.01719 (18)
N30.19436 (11)0.04583 (14)0.68445 (5)0.01692 (19)
C10.11724 (12)0.12940 (17)0.67556 (7)0.0167 (2)
C20.05157 (13)0.21455 (17)0.75221 (6)0.0163 (2)
C30.01653 (12)0.39733 (17)0.74838 (6)0.0174 (2)
C40.09563 (13)0.46934 (17)0.81773 (7)0.0187 (2)
C50.10004 (13)0.36386 (18)0.89150 (7)0.0196 (2)
H5A0.15450.41240.93790.024*
C60.02551 (13)0.18914 (17)0.89725 (7)0.0186 (2)
H6A0.02600.12060.94840.022*
C70.05077 (12)0.11180 (17)0.82860 (7)0.0163 (2)
C80.13440 (12)0.06634 (16)0.83200 (6)0.0167 (2)
C90.24986 (13)0.32389 (17)0.87093 (7)0.0181 (2)
C100.31098 (13)0.48761 (18)0.91234 (7)0.0197 (2)
H10A0.28670.50930.96910.024*
C110.40443 (13)0.61520 (17)0.87209 (7)0.0210 (2)
C120.44105 (14)0.57844 (18)0.78680 (8)0.0221 (2)
H12A0.50870.66380.75880.027*
C130.38171 (14)0.42520 (17)0.74504 (7)0.0202 (2)
H13A0.40720.40410.68840.024*
C140.20519 (13)0.13373 (16)0.76184 (7)0.0169 (2)
C150.25250 (13)0.13309 (17)0.60803 (6)0.0176 (2)
H15A0.23730.27210.61120.021*
H15B0.18740.08600.55930.021*
C160.42737 (13)0.09168 (16)0.59426 (7)0.0168 (2)
C170.48763 (14)0.12660 (17)0.51524 (7)0.0199 (2)
H17A0.41870.17380.47140.024*
C180.64788 (14)0.09259 (18)0.50067 (8)0.0245 (2)
H18A0.68790.11750.44700.029*
C190.74952 (14)0.02273 (19)0.56382 (9)0.0269 (3)
H19A0.85870.00140.55340.032*
C200.69096 (15)0.0119 (2)0.64258 (9)0.0269 (3)
H20A0.76050.05880.68630.032*
C210.53069 (14)0.02215 (17)0.65755 (7)0.0216 (2)
H21A0.49140.00230.71140.026*
C220.13252 (15)0.51842 (19)0.62248 (8)0.0253 (2)
H22A0.10960.60380.57610.038*
H22B0.15250.39030.60070.038*
H22C0.22730.56360.65060.038*
C230.23837 (15)0.72755 (19)0.87505 (8)0.0253 (3)
H23A0.28090.85240.85890.038*
H23B0.32630.64540.89150.038*
H23C0.16100.74170.92230.038*
C240.47030 (15)0.7900 (2)0.91476 (8)0.0273 (3)
H24A0.46050.77780.97540.041*
H24B0.41010.90130.89460.041*
H24C0.58330.80500.90200.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0245 (4)0.0245 (4)0.0156 (4)0.0009 (3)0.0033 (3)0.0029 (3)
O20.0243 (4)0.0195 (4)0.0182 (4)0.0043 (3)0.0001 (3)0.0029 (3)
O30.0264 (4)0.0185 (4)0.0230 (4)0.0020 (3)0.0031 (3)0.0031 (3)
N10.0191 (4)0.0215 (5)0.0156 (4)0.0032 (4)0.0004 (3)0.0014 (4)
N20.0173 (4)0.0184 (4)0.0160 (4)0.0033 (4)0.0008 (3)0.0005 (4)
N30.0181 (4)0.0199 (5)0.0129 (4)0.0010 (4)0.0027 (3)0.0003 (4)
C10.0141 (4)0.0207 (5)0.0152 (5)0.0038 (4)0.0025 (4)0.0010 (4)
C20.0148 (4)0.0196 (5)0.0146 (5)0.0047 (4)0.0007 (4)0.0011 (4)
C30.0161 (5)0.0200 (5)0.0159 (5)0.0049 (4)0.0000 (4)0.0002 (4)
C40.0166 (5)0.0188 (5)0.0207 (5)0.0030 (4)0.0007 (4)0.0026 (4)
C50.0172 (5)0.0239 (6)0.0181 (5)0.0037 (4)0.0038 (4)0.0038 (4)
C60.0193 (5)0.0226 (5)0.0142 (4)0.0049 (4)0.0022 (4)0.0003 (4)
C70.0144 (5)0.0197 (5)0.0147 (4)0.0040 (4)0.0006 (4)0.0006 (4)
C80.0156 (5)0.0201 (5)0.0143 (5)0.0045 (4)0.0012 (4)0.0001 (4)
C90.0174 (5)0.0217 (6)0.0152 (5)0.0054 (4)0.0001 (4)0.0002 (4)
C100.0191 (5)0.0228 (6)0.0171 (5)0.0045 (4)0.0013 (4)0.0033 (4)
C110.0182 (5)0.0198 (6)0.0246 (5)0.0045 (4)0.0028 (4)0.0030 (5)
C120.0210 (5)0.0206 (6)0.0246 (5)0.0018 (4)0.0006 (4)0.0009 (4)
C130.0215 (5)0.0196 (5)0.0196 (5)0.0022 (4)0.0027 (4)0.0020 (4)
C140.0166 (5)0.0184 (5)0.0156 (5)0.0033 (4)0.0003 (4)0.0000 (4)
C150.0176 (5)0.0215 (5)0.0139 (4)0.0018 (4)0.0021 (4)0.0020 (4)
C160.0174 (5)0.0148 (5)0.0182 (5)0.0001 (4)0.0020 (4)0.0016 (4)
C170.0218 (5)0.0170 (5)0.0212 (5)0.0004 (4)0.0037 (4)0.0002 (4)
C180.0253 (6)0.0177 (5)0.0313 (6)0.0036 (5)0.0114 (5)0.0005 (5)
C190.0171 (5)0.0208 (6)0.0433 (7)0.0013 (4)0.0058 (5)0.0043 (5)
C200.0216 (6)0.0241 (6)0.0346 (6)0.0039 (5)0.0052 (5)0.0017 (5)
C210.0230 (5)0.0211 (6)0.0205 (5)0.0031 (4)0.0004 (4)0.0011 (4)
C220.0304 (6)0.0237 (6)0.0214 (5)0.0029 (5)0.0042 (4)0.0009 (5)
C230.0236 (6)0.0234 (6)0.0290 (6)0.0007 (5)0.0042 (5)0.0065 (5)
C240.0243 (6)0.0246 (6)0.0327 (6)0.0004 (5)0.0018 (5)0.0076 (5)
Geometric parameters (Å, º) top
O1—C11.2238 (14)C11—C241.5027 (17)
O2—C31.3702 (14)C12—C131.3538 (17)
O2—C221.4364 (14)C12—H12A0.9500
O3—C41.3634 (14)C13—H13A0.9500
O3—C231.4273 (15)C15—C161.5162 (15)
N1—C91.3246 (16)C15—H15A0.9900
N1—C81.3772 (14)C15—H15B0.9900
N2—C131.3838 (15)C16—C211.3932 (16)
N2—C141.3852 (16)C16—C171.4001 (16)
N2—C91.4180 (14)C17—C181.3905 (16)
N3—C141.3833 (14)C17—H17A0.9500
N3—C11.3983 (15)C18—C191.384 (2)
N3—C151.4675 (14)C18—H18A0.9500
C1—C21.4888 (15)C19—C201.3905 (19)
C2—C31.4093 (17)C19—H19A0.9500
C2—C71.4198 (15)C20—C211.3920 (17)
C3—C41.4080 (15)C20—H20A0.9500
C4—C51.3956 (16)C21—H21A0.9500
C5—C61.3820 (18)C22—H22A0.9800
C5—H5A0.9500C22—H22B0.9800
C6—C71.4015 (16)C22—H22C0.9800
C6—H6A0.9500C23—H23A0.9800
C7—C81.4376 (16)C23—H23B0.9800
C8—C141.3735 (15)C23—H23C0.9800
C9—C101.4160 (17)C24—H24A0.9800
C10—C111.3689 (18)C24—H24B0.9800
C10—H10A0.9500C24—H24C0.9800
C11—C121.4325 (16)
C3—O2—C22114.36 (9)N2—C13—H13A120.2
C4—O3—C23117.04 (10)C8—C14—N3124.06 (11)
C9—N1—C8104.57 (9)C8—C14—N2106.58 (10)
C13—N2—C14134.21 (10)N3—C14—N2129.36 (10)
C13—N2—C9121.07 (10)N3—C15—C16113.18 (9)
C14—N2—C9104.68 (9)N3—C15—H15A108.9
C14—N3—C1120.01 (9)C16—C15—H15A108.9
C14—N3—C15122.98 (10)N3—C15—H15B108.9
C1—N3—C15116.91 (9)C16—C15—H15B108.9
O1—C1—N3118.80 (10)H15A—C15—H15B107.8
O1—C1—C2123.97 (11)C21—C16—C17118.79 (11)
N3—C1—C2117.16 (9)C21—C16—C15122.45 (10)
C3—C2—C7119.22 (10)C17—C16—C15118.75 (10)
C3—C2—C1119.65 (10)C18—C17—C16120.31 (11)
C7—C2—C1121.08 (10)C18—C17—H17A119.8
O2—C3—C4118.08 (11)C16—C17—H17A119.8
O2—C3—C2121.91 (10)C19—C18—C17120.50 (12)
C4—C3—C2119.82 (10)C19—C18—H18A119.7
O3—C4—C5125.26 (11)C17—C18—H18A119.7
O3—C4—C3114.61 (10)C18—C19—C20119.63 (11)
C5—C4—C3120.13 (11)C18—C19—H19A120.2
C6—C5—C4120.28 (11)C20—C19—H19A120.2
C6—C5—H5A119.9C19—C20—C21120.10 (12)
C4—C5—H5A119.9C19—C20—H20A119.9
C5—C6—C7120.85 (10)C21—C20—H20A119.9
C5—C6—H6A119.6C20—C21—C16120.65 (11)
C7—C6—H6A119.6C20—C21—H21A119.7
C6—C7—C2119.51 (11)C16—C21—H21A119.7
C6—C7—C8123.11 (10)O2—C22—H22A109.5
C2—C7—C8117.35 (10)O2—C22—H22B109.5
C14—C8—N1111.75 (10)H22A—C22—H22B109.5
C14—C8—C7119.75 (10)O2—C22—H22C109.5
N1—C8—C7128.45 (10)H22A—C22—H22C109.5
N1—C9—C10129.72 (10)H22B—C22—H22C109.5
N1—C9—N2112.40 (10)O3—C23—H23A109.5
C10—C9—N2117.88 (10)O3—C23—H23B109.5
C11—C10—C9121.21 (10)H23A—C23—H23B109.5
C11—C10—H10A119.4O3—C23—H23C109.5
C9—C10—H10A119.4H23A—C23—H23C109.5
C10—C11—C12118.42 (11)H23B—C23—H23C109.5
C10—C11—C24122.11 (11)C11—C24—H24A109.5
C12—C11—C24119.46 (11)C11—C24—H24B109.5
C13—C12—C11121.70 (12)H24A—C24—H24B109.5
C13—C12—H12A119.2C11—C24—H24C109.5
C11—C12—H12A119.2H24A—C24—H24C109.5
C12—C13—N2119.60 (11)H24B—C24—H24C109.5
C12—C13—H13A120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N1i0.952.683.4126 (16)134
C18—H18A···O1ii0.952.363.1127 (16)136
C19—H19A···O1iii0.952.583.3840 (16)142
Symmetry codes: (i) x, y1/2, z+2; (ii) x+1, y+1/2, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H21N3O3
Mr399.44
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.3650 (17), 7.0500 (14), 15.983 (3)
β (°) 92.27 (3)
V3)941.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.965, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
16260, 4479, 4383
Rint0.021
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.06
No. of reflections4479
No. of parameters274
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20
Absolute structureFlack (1983)
Absolute structure parameter0.2 (6)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N1i0.952.683.4126 (16)133.9
C18—H18A···O1ii0.952.363.1127 (16)135.8
C19—H19A···O1iii0.952.583.3840 (16)142.3
Symmetry codes: (i) x, y1/2, z+2; (ii) x+1, y+1/2, z+1; (iii) x+1, y, z.
 

Acknowledgements

Financial support by the BMBF (01RI05181) is greatly acknowledged.

References

First citationAlmirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305–312.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J.-P. (1998). J. Med. Chem. 41, 5108–5112.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMeng, T., Zhang, Z., Hu, D., Lin, L., Ding, J., Wang, X. & Shen, J. (2007). J. Comb. Chem. 9, 739–741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMert-Balci, F., Conrad, J., Meindl, K., Schulz, T., Stalke, D. & Beifuss, U. (2008). Synthesis, pp. 3649–3656.  Google Scholar
First citationSanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221–2227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, R. S. & Kumar, D. (1999). Tetrahedron Lett. 40, 7665–7669.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2464-o2465
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds