organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[1-(Hy­droxy­imino)ethyl]-N-(4-nitro­benzyl­­idene)aniline

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 18 May 2009; accepted 24 August 2009; online 12 September 2009)

In the title compound, C15H13N3O3, the dihedral angle formed by the two benzene rings is 44.23 (2)°. The crystal structure is stabilized by aromatic ππ stacking inter­actions, with centroid-centroid distances of 3.825 (3) and 3.870 (4) Å between the aniline and the nitro­benzene rings of neighbouring mol­ecules, respectively. In addition, the stacked mol­ecules exhibit inter­molecular C—H⋯N and C—H⋯O inter­actions.

Related literature

For background to Schiff bases, see: Lozier et al. (1975[Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955-962.]). For the synthesis, see: Rafiq et al. (2008[Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.]); Duan et al. (2007[Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.]); Dong et al. (2008[Dong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008). Acta Cryst. E64, o1917.]). For related structures, see: Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Fun et al. (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O3

  • Mr = 283.28

  • Orthorhombic, P 21 21 21

  • a = 7.375 (1) Å

  • b = 10.770 (2) Å

  • c = 16.906 (2) Å

  • V = 1342.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.50 × 0.35 × 0.10 mm

Data collection
  • Bruker SMART1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.990

  • 7656 measured reflections

  • 1700 independent reflections

  • 899 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.03

  • 1700 reflections

  • 195 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.95 (4) 1.97 (4) 2.887 (4) 162 (4)
C1—H1A⋯O3ii 0.96 2.62 3.469 (5) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that Schiff bases are one of the most popular mixed-donor ligands in the field of coordination chemistry. Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Some structures of oxime compounds forming by Schiff bases reaction have been reported (Bomfim et al., 2005; Fun et al., 2008). Here we report the synthesis and crystal structure of the title compound (I), (Fig. 1).

The dihedral angle in (I) formed by the aniline and nitrobenzene rings is 44.23 (2)°. The molecular packing (Fig. 2) is stabilized by aromatic π···π interactions between the aniline and the nitrobenzene rings of neighbouring molecules, with a Cg1···Cg2iii separation of 3.825 (3) Å and a Cg1···Cg2iv separation of 3.870 (4) Å (Fig. 2; Cg1 and Cg2 are the centroids of the C3—C8 benzene and the C10–C15 benzene rings, respectively). Additionally, intermolecular O–H···N and C—H···O interactions in the structure were observed (Table 1 and Fig. 2).

The title compound is not chiral, but space group is p212121. This is because the title compound is rigid in the crystal, and adopts a chiral helicalx-type structure.

Related literature top

For background to Schiff bases, see: Lozier et al. (1975). For the synthesis, see: Rafiq et al. (2008); Duan et al. (2007); Dong et al. (2008). For related structures, see: Bomfim et al. (2005); Fun et al. (2008).

Experimental top

4-Aminophenylethanone oxime was prepared by 1-(4-aminophenyl)ethanone, hydroxylamine sulfate and sodium acetate (Rafiq et al., 2008; Duan et al., 2007; Dong et al., 2008). To an ethanol solution (5 ml) of 4-aminophenylethanone oxime (150.2 mg, 1.00 mmol) was added dropwise an ethanol solution (5 ml) of 4-nitrobenzaldehyde (152.5 mg, 1.01 mmol). The mixture solution was stirred at 328–333 K for 5 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 367.5 mg (Yield, 82.6%) of solid; m.p. 484–485 K. Pale-yellow block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of ethyl acetate of (I) at room temperature for about one month. Anal. Calcd. for C15H13N3O3: C, 62.6; H, 4.63; N, 14.83 Found: C, 62.1; H, 4.59; N, 14.87.

Refinement top

Atom H1 of the hydroxy group was found in a difference Fourier map and was refined with an O—H distance restraint of 0.95 (4) Å. The other H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. π···π, O—H···N and C—H···O interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry code: (i) -x + 3/2, -y + 1, z + 1/2; (ii) x, y, z + 1; (iii) x + 1/2, -y + 3/2, -z + 1; (iv) x - 1/2, -y + 3/2, -z + 1; (v) -x + 3/2, -y + 1, z - 1/2.]
4-[1-(Hydroxyimino)ethyl]-N-(4-nitrobenzylidene)aniline top
Crystal data top
C15H13N3O3F(000) = 592
Mr = 283.28Dx = 1.401 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1209 reflections
a = 7.375 (1) Åθ = 2.2–21.4°
b = 10.770 (2) ŵ = 0.10 mm1
c = 16.906 (2) ÅT = 298 K
V = 1342.8 (3) Å3Block-like, pale-yellow
Z = 40.50 × 0.35 × 0.10 mm
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
1700 independent reflections
Radiation source: fine-focus sealed tube899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
phi and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.952, Tmax = 0.990k = 1313
7656 measured reflectionsl = 1421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.0834P]
where P = (Fo2 + 2Fc2)/3
1700 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H13N3O3V = 1342.8 (3) Å3
Mr = 283.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.375 (1) ŵ = 0.10 mm1
b = 10.770 (2) ÅT = 298 K
c = 16.906 (2) Å0.50 × 0.35 × 0.10 mm
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
1700 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
899 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.990Rint = 0.068
7656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
1700 reflectionsΔρmin = 0.17 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7084 (5)0.5375 (3)0.90756 (16)0.0478 (9)
N20.6140 (4)0.6960 (3)0.54920 (16)0.0389 (8)
N30.6281 (5)0.8627 (4)0.1831 (2)0.0601 (11)
O10.7150 (4)0.5267 (3)0.99032 (15)0.0636 (10)
H10.784 (6)0.454 (4)0.999 (3)0.100 (18)*
O20.6733 (5)0.9635 (3)0.15589 (17)0.0830 (11)
O30.5894 (6)0.7723 (3)0.14311 (17)0.0939 (13)
C10.5534 (7)0.7318 (4)0.9402 (2)0.0755 (15)
H1A0.58210.70900.99360.113*
H1B0.42410.73520.93390.113*
H1C0.60460.81170.92860.113*
C20.6304 (5)0.6371 (3)0.8846 (2)0.0384 (9)
C30.6214 (5)0.6542 (3)0.79802 (19)0.0319 (9)
C40.5531 (5)0.7611 (3)0.76460 (19)0.0394 (10)
H40.50840.82350.79720.047*
C50.5498 (5)0.7776 (3)0.6832 (2)0.0391 (10)
H50.50410.85100.66210.047*
C60.6133 (5)0.6869 (3)0.63323 (19)0.0328 (9)
C70.6787 (5)0.5777 (3)0.6663 (2)0.0381 (10)
H70.72010.51450.63340.046*
C80.6832 (5)0.5618 (3)0.7469 (2)0.0377 (9)
H80.72830.48800.76770.045*
C90.6249 (5)0.8019 (3)0.5170 (2)0.0402 (10)
H90.63640.87190.54890.048*
C100.6198 (5)0.8171 (3)0.43071 (19)0.0375 (10)
C110.6747 (5)0.9298 (3)0.3977 (2)0.0454 (11)
H110.70980.99480.43050.055*
C120.6773 (5)0.9453 (4)0.3167 (2)0.0466 (11)
H120.71561.01980.29440.056*
C130.6223 (5)0.8484 (4)0.2699 (2)0.0407 (10)
C140.5622 (5)0.7378 (3)0.3007 (2)0.0436 (11)
H140.52230.67430.26780.052*
C150.5627 (5)0.7232 (3)0.3816 (2)0.0405 (10)
H150.52370.64850.40340.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.069 (3)0.0466 (19)0.0279 (16)0.0068 (19)0.0017 (17)0.0065 (15)
N20.043 (2)0.0377 (17)0.0363 (18)0.0016 (17)0.0005 (16)0.0021 (14)
N30.060 (3)0.080 (3)0.040 (2)0.017 (3)0.003 (2)0.013 (2)
O10.097 (3)0.0590 (19)0.0348 (15)0.014 (2)0.0051 (16)0.0064 (14)
O20.100 (3)0.094 (2)0.0551 (19)0.010 (2)0.0065 (19)0.0338 (19)
O30.139 (4)0.100 (3)0.0422 (19)0.005 (3)0.002 (2)0.0081 (19)
C10.111 (4)0.072 (3)0.044 (2)0.031 (3)0.003 (3)0.011 (2)
C20.043 (3)0.034 (2)0.038 (2)0.007 (2)0.0012 (18)0.0009 (17)
C30.030 (2)0.034 (2)0.032 (2)0.0030 (19)0.0013 (17)0.0024 (16)
C40.042 (3)0.038 (2)0.038 (2)0.002 (2)0.0005 (18)0.0033 (18)
C50.042 (3)0.033 (2)0.043 (2)0.0047 (19)0.0014 (18)0.0071 (17)
C60.034 (2)0.037 (2)0.027 (2)0.0009 (19)0.0004 (17)0.0015 (15)
C70.042 (3)0.035 (2)0.037 (2)0.001 (2)0.0061 (19)0.0006 (17)
C80.043 (3)0.0325 (19)0.037 (2)0.002 (2)0.0015 (18)0.0024 (17)
C90.044 (3)0.041 (2)0.035 (2)0.000 (2)0.0051 (19)0.0031 (17)
C100.038 (3)0.039 (2)0.035 (2)0.0029 (19)0.0034 (19)0.0022 (17)
C110.045 (3)0.042 (2)0.049 (2)0.002 (2)0.005 (2)0.0022 (18)
C120.048 (3)0.042 (2)0.050 (3)0.004 (2)0.000 (2)0.0166 (19)
C130.039 (3)0.051 (2)0.032 (2)0.013 (2)0.0026 (18)0.0079 (18)
C140.043 (3)0.044 (2)0.044 (2)0.008 (2)0.0051 (18)0.0009 (19)
C150.039 (3)0.042 (2)0.041 (2)0.003 (2)0.0038 (18)0.0064 (18)
Geometric parameters (Å, º) top
N1—C21.278 (4)C5—H50.9300
N1—O11.405 (4)C6—C71.388 (4)
N2—C91.266 (4)C7—C81.375 (5)
N2—C61.424 (4)C7—H70.9300
N3—O31.219 (4)C8—H80.9300
N3—O21.225 (4)C9—C101.469 (5)
N3—C131.476 (5)C9—H90.9300
O1—H10.95 (4)C10—C151.375 (5)
C1—C21.498 (5)C10—C111.396 (5)
C1—H1A0.9600C11—C121.378 (5)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C131.371 (5)
C2—C31.477 (4)C12—H120.9300
C3—C41.378 (4)C13—C141.374 (5)
C3—C81.395 (4)C14—C151.376 (4)
C4—C51.388 (4)C14—H140.9300
C4—H40.9300C15—H150.9300
C5—C61.374 (5)
C2—N1—O1112.8 (3)C8—C7—C6120.9 (3)
C9—N2—C6119.4 (3)C8—C7—H7119.6
O3—N3—O2124.2 (4)C6—C7—H7119.6
O3—N3—C13117.5 (4)C7—C8—C3121.1 (3)
O2—N3—C13118.3 (4)C7—C8—H8119.4
N1—O1—H1104 (3)C3—C8—H8119.4
C2—C1—H1A109.5N2—C9—C10121.7 (3)
C2—C1—H1B109.5N2—C9—H9119.1
H1A—C1—H1B109.5C10—C9—H9119.1
C2—C1—H1C109.5C15—C10—C11119.1 (3)
H1A—C1—H1C109.5C15—C10—C9121.7 (3)
H1B—C1—H1C109.5C11—C10—C9119.2 (3)
N1—C2—C3115.2 (3)C12—C11—C10120.4 (4)
N1—C2—C1123.5 (3)C12—C11—H11119.8
C3—C2—C1121.3 (3)C10—C11—H11119.8
C4—C3—C8117.5 (3)C13—C12—C11118.5 (4)
C4—C3—C2121.8 (3)C13—C12—H12120.8
C8—C3—C2120.7 (3)C11—C12—H12120.8
C3—C4—C5121.3 (3)C12—C13—C14122.4 (3)
C3—C4—H4119.3C12—C13—N3119.1 (4)
C5—C4—H4119.3C14—C13—N3118.5 (4)
C6—C5—C4120.8 (3)C13—C14—C15118.4 (4)
C6—C5—H5119.6C13—C14—H14120.8
C4—C5—H5119.6C15—C14—H14120.8
C5—C6—C7118.3 (3)C10—C15—C14121.1 (4)
C5—C6—N2124.4 (3)C10—C15—H15119.5
C7—C6—N2117.3 (3)C14—C15—H15119.5
O1—N1—C2—C3179.3 (3)C6—N2—C9—C10177.8 (3)
O1—N1—C2—C10.3 (6)N2—C9—C10—C1515.0 (6)
N1—C2—C3—C4175.2 (3)N2—C9—C10—C11164.9 (4)
C1—C2—C3—C44.4 (6)C15—C10—C11—C122.1 (6)
N1—C2—C3—C84.4 (5)C9—C10—C11—C12177.8 (3)
C1—C2—C3—C8175.9 (4)C10—C11—C12—C131.0 (6)
C8—C3—C4—C51.5 (5)C11—C12—C13—C141.0 (6)
C2—C3—C4—C5178.2 (4)C11—C12—C13—N3178.7 (4)
C3—C4—C5—C60.6 (6)O3—N3—C13—C12175.4 (4)
C4—C5—C6—C70.8 (6)O2—N3—C13—C123.7 (6)
C4—C5—C6—N2179.7 (3)O3—N3—C13—C144.3 (6)
C9—N2—C6—C528.3 (6)O2—N3—C13—C14176.5 (4)
C9—N2—C6—C7152.8 (4)C12—C13—C14—C151.9 (6)
C5—C6—C7—C81.3 (6)N3—C13—C14—C15177.8 (4)
N2—C6—C7—C8179.8 (3)C11—C10—C15—C141.3 (6)
C6—C7—C8—C30.4 (6)C9—C10—C15—C14178.6 (3)
C4—C3—C8—C71.0 (6)C13—C14—C15—C100.7 (6)
C2—C3—C8—C7178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.95 (4)1.97 (4)2.887 (4)162 (4)
C1—H1A···O3ii0.962.623.469 (5)148
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O3
Mr283.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.375 (1), 10.770 (2), 16.906 (2)
V3)1342.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.35 × 0.10
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7656, 1700, 899
Rint0.068
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.03
No. of reflections1700
No. of parameters195
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.95 (4)1.97 (4)2.887 (4)162 (4)
C1—H1A···O3ii0.962.623.469 (5)147.9
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Foundation of the Education Department of Gansu Province (No. 20873).

References

First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008). Acta Cryst. E64, o1917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds