metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1193-m1194

Bis[2-(benzyl­amino)pyridine-κN](2-formyl-6-meth­oxy­phenolato-κ2O1,O6)(nitrato-κ2O,O′)nickel(II)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 7 August 2009; accepted 3 September 2009; online 9 September 2009)

In the title compound, [Ni(C8H7O3)(NO3)(C12H12N2)2], the asymmetric unit contains a NiII atom, two mol­ecules of 2-(benzyl­amino)pyridine, a mol­ecule of deprotonated o-vanillin (3-methoxy­salicylaldehydate) and a bidentate nitrate anion. The NiII center is six-coordinated by two pyridine N atoms from 2-(benzyl­amino)pyridine, two O atoms from o-vanillin and two O atoms from the nitrate anion. The crystal packing shows two hydrogen bonds from the amine N—H group to the deprotonated phenol O atom of the o-vanillin moieties, as well as weak C—H⋯O secondary inter­actions. These inter­actions link the mol­ecules into ribbons in the c direction. The steric requirement of the bidentate nitrate and its small bite angle [61.01 (3)°] cause some orientation of the two 2-(benzyl­amino)pyridine groups. As a result, this coordination environment of the NiII center is distorted octa­hedral, as the trans angles range from 158.65 (3) to 175.76 (3)° and the cis angles range from 61.01 (3) (for the bidentate nitrate O atoms) to 102.30 (4)°.

Related literature

For our continuing studies of nickel-containing metalloenzymes, see: Gultneh et al. (2008[Gultneh, Y., Khan, A. R., Ahvazi, B. & Butcher, R. J. (2008). Polyhedron, 17, 3351-3360.]). For literature related to mixed ligand nitrato complexes of Ni, see: Fernández-Fernández et al. (2006[Fernández-Fernández, M., Bastida, R., Maćias, A., Valencia, L. & Pérez-Lourido, P. (2006). Polyhedron, 25, 783-792.]); Tokii et al. (1979[Tokii, T., Emori, S. & Muto, Y. (1979). Bull. Chem. Soc. Jpn, 52, 2114-2119.]). For literature related to the catalytic activity of mixed ligand complexes of nickel, see: Gao et al. (2008[Gao, H., Huang, Z., Song, K., Liu, F., Long, J., Hu, H. & Wu, Q. (2008). J. Polym. Sci. Part A Polym. Chem. 46, 1618-1628.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7O3)(NO3)(C12H12N2)2]

  • Mr = 640.33

  • Monoclinic, P 21 /c

  • a = 10.3522 (2) Å

  • b = 16.7539 (3) Å

  • c = 16.8132 (3) Å

  • β = 95.5831 (17)°

  • V = 2902.25 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 110 K

  • 0.48 × 0.41 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.724, Tmax = 0.861

  • 21278 measured reflections

  • 9636 independent reflections

  • 6913 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.071

  • S = 0.92

  • 9636 reflections

  • 404 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—O1A 1.9690 (8)
Ni—N1B 2.0555 (10)
Ni—O2A 2.0565 (8)
Ni—O1 2.1148 (8)
Ni—N1C 2.1230 (9)
Ni—O2 2.1476 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3AC⋯O1i 0.98 2.57 3.3537 (15) 137
C4A—H4AA⋯O1i 0.95 2.55 3.4357 (15) 155
C4B—H4BA⋯O2ii 0.95 2.54 3.4308 (15) 157
C6B—H6BB⋯O2ii 0.99 2.57 3.4670 (17) 151
N2B—H2BN⋯O1A 0.893 (15) 2.088 (15) 2.9215 (14) 154.9 (12)
N2C—H2CN⋯O1A 0.754 (14) 2.056 (14) 2.7655 (13) 156.8 (16)
N2C—H2CN⋯O3A 0.754 (14) 2.669 (14) 3.2124 (13) 130.8 (13)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our continuing studies (Gultneh et al. 2008) of nickel(II) complexes with relevance to the nickel containing metalloenzymes we wish to report the structure of the mixed ligand complex, bis(2-(benzylamino)pyridine-κN)(3-methoxysalicylaldehydo- κ2O,O')nitrato-κ2O,O' nickel(II). The title compound, C32H31N5NiO6, contains two 2-(benzylamino)pyridine ligands (2-BAP), a bidentate nitrate anion, and a deprotonated o-vanillin moiety coordinated to nickel. The nickel atom is six coordinated by two pyridine N atoms from 2-(benzylamino)pyridine, two O from o-vanillin and two O atoms from the nitrate anion. Thus in the title complex, the 2-BAP (2 molecules) coordinate to Ni individually forming pendant arms that render the structure flexible. Similar mixed ligand complexes have been synthesized (Fernández-Fernández et al. 2006), however, in this case, the nitrate coordinated to the metal through only one O donor atom as a monodentate ligand. 2-Aminopyridine containing N-aryl subsituents (a ligand with both an amine donor and a pyridine donor similar to the donors in 2-BAP) has been used (Gao et al. 2008) along with halogens such as bromide, to synthesize a series nickel(II) complexes with potential use as precatalysts for ethylene polymerization. A combination of bidentate nitrate ions and tridentate Schiff bases have been used to synthesize dinuclear nickel complex with ligands derived from salicylaldehydes and N-substituted trimethylenediamines (Tokii et al., 1979).

The Ni—O (nitrate) bond distances (see Table 1) [Ni—O(1), 2.1148 (8) Å; Ni—O(2), 2.1476 (9) Å], Ni—O (o-vanillin) bond distances [Ni—O(1 A), 1.9690 (8) Å; Ni—O(2 A), 2.0565 (8) Å] and Ni—N (2-BAP) bond distances [Ni—N(1B), 2.0555 (10) Å; Ni—N(1 C), 2.1230 (9) Å] are within the normal ranges observed in other Ni complexes containing similar ligands (Allen, 2002). The geometry about the central Ni is distorted octahedral due to the small bite angle (see Table 1) subtended by the bidentate nitrate anion (O1—Ni—O2, 61.01 (3)°). This causes some re-orientation of the two 2-(benzylamino)pyridine groups. As a result, this coordination environment of the Ni is distorted octahedral as the trans angles range from 158.65 (3)° to 175.76 (3)° and the cis angles range from 61.01 (3)° (for the bidentate nitrate anion O's) to 102.30 (4)°.

N—H···O hydrogen bonds and weak C—H···O secondary interactions link the molecules into ribbons in the c direction (see Table 2).

Related literature top

For literature related to mixed ligand nitrato complexes of Ni, see: Fernández-Fernández, et al. (2006); Tokii et al. (1979). For literature related to the catalytic activity of mixed ligand complexes of nickel, see: Gao et al. (2008).

For related literature, see: Allen (2002); Gultneh et al. (2008).

Experimental top

The complex was synthesized by reacting 0.73 g (2.0 mmol) of Ni(NO3)2.6H2O in MeOH (20 ml) with a mixture of 0.302 g o-vanillin (2 mmol) and 0.370 g of 2-(benzylamino)pyridine (2 mmol). The secondary amine and the aldehyde were mixed in 30 mL of methanol (MeOH) and stirred overnight at 40 C. The solution of the salt and the two ligands was stirred overnight at room temperature. The mixture was evaporated under reduced pressure and dark green semi-solid was obtained. The solid was then dissolved in 50/50 MeOH/DMF. The solution obtained was filtered and layered with diethyl ether. Light yellow greenish X-ray quality crystals were obtained after slow diffusion of the diethyl ether into the MeOH/DMF solution.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 to 0.99 Å and Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for the CH3]. The positional parameters for the H atoms attached to N were refined with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the dinuclear complex, C32H31N5NiO6 showing the atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing for C32H31N5NiO6, viewed down the a axis showing the intermolecular N—H···O and C—H···O interactions.
Bis[2-(benzylamino)pyridine-κN](2-formyl-6-methoxyphenolato- κ2O1,O6)(nitrato-κ2O,O')nickel(II) top
Crystal data top
[Ni(C8H7O3)(NO3)(C12H12N2)2]F(000) = 1336
Mr = 640.33Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3522 (2) ÅCell parameters from 10239 reflections
b = 16.7539 (3) Åθ = 4.6–32.7°
c = 16.8132 (3) ŵ = 0.72 mm1
β = 95.5831 (17)°T = 110 K
V = 2902.25 (9) Å3Plate, deep green
Z = 40.48 × 0.41 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur with a Ruby (Gemini Mo) detector
diffractometer
9636 independent reflections
Radiation source: Enhance (Mo) X-ray Source6913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 4.7°
ω scansh = 1511
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2523
Tmin = 0.724, Tmax = 0.861l = 2522
21278 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
9636 reflections(Δ/σ)max = 0.003
404 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C8H7O3)(NO3)(C12H12N2)2]V = 2902.25 (9) Å3
Mr = 640.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3522 (2) ŵ = 0.72 mm1
b = 16.7539 (3) ÅT = 110 K
c = 16.8132 (3) Å0.48 × 0.41 × 0.22 mm
β = 95.5831 (17)°
Data collection top
Oxford Diffraction Xcalibur with a Ruby (Gemini Mo) detector
diffractometer
9636 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
6913 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.861Rint = 0.024
21278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.37 e Å3
9636 reflectionsΔρmin = 0.42 e Å3
404 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d (release 27-02-2009 CrysAlis171 .NET) (compiled Feb 27 2009,15:38:38) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Oxford Diffraction, 2008)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.202156 (14)0.653615 (8)0.569477 (9)0.01381 (4)
O10.02030 (8)0.63205 (5)0.61280 (5)0.01873 (17)
O20.19371 (8)0.63743 (5)0.69558 (5)0.01888 (18)
O30.00620 (9)0.61203 (6)0.74021 (5)0.0285 (2)
O1A0.39179 (8)0.66419 (4)0.57083 (5)0.01595 (17)
O2A0.21780 (8)0.53148 (5)0.56286 (5)0.01781 (17)
O3A0.62621 (8)0.71334 (4)0.61510 (5)0.01908 (18)
N0.07114 (10)0.62649 (6)0.68502 (6)0.0184 (2)
N1B0.14274 (9)0.65492 (5)0.44922 (6)0.01552 (19)
N2B0.30972 (10)0.73612 (6)0.41582 (6)0.0209 (2)
H2BN0.3426 (14)0.7295 (8)0.4665 (9)0.025*
N1C0.17410 (10)0.77842 (6)0.58129 (6)0.0164 (2)
N2C0.36709 (10)0.80155 (6)0.65929 (7)0.0202 (2)
H2CN0.3901 (14)0.7620 (8)0.6447 (9)0.024*
C1A0.47770 (11)0.60855 (6)0.59056 (7)0.0142 (2)
C2A0.60871 (11)0.63213 (7)0.61289 (7)0.0157 (2)
C3A0.75547 (12)0.74125 (7)0.63705 (9)0.0252 (3)
H3AA0.78320.72500.69210.038*
H3AB0.75740.79960.63320.038*
H3AC0.81430.71830.60090.038*
C4A0.70497 (12)0.57673 (7)0.63104 (7)0.0188 (2)
H4AA0.79190.59390.64420.023*
C5A0.67562 (12)0.49474 (7)0.63028 (7)0.0202 (3)
H5AA0.74240.45680.64350.024*
C6A0.55120 (12)0.46981 (7)0.61059 (7)0.0185 (2)
H6AA0.53200.41430.60980.022*
C7A0.45020 (11)0.52568 (6)0.59123 (7)0.0149 (2)
C8A0.32180 (12)0.49455 (7)0.57327 (7)0.0174 (2)
H8AA0.31550.43810.56870.021*
C1B0.03721 (12)0.60977 (7)0.42644 (8)0.0191 (2)
H1BA0.00270.57740.46570.023*
C2B0.02289 (12)0.60799 (8)0.35011 (8)0.0231 (3)
H2BA0.09600.57480.33640.028*
C3B0.02721 (13)0.65673 (7)0.29319 (8)0.0246 (3)
H3BA0.01360.65830.24010.030*
C4B0.13525 (13)0.70228 (7)0.31391 (7)0.0220 (3)
H4BA0.16920.73580.27540.026*
C5B0.19575 (11)0.69900 (7)0.39280 (7)0.0167 (2)
C6B0.36416 (13)0.80128 (8)0.37277 (10)0.0317 (3)
H6BA0.33700.85240.39560.038*
H6BB0.32680.79930.31630.038*
C7B0.50969 (12)0.80081 (7)0.37477 (7)0.0185 (2)
C8B0.56829 (14)0.85753 (7)0.32841 (8)0.0255 (3)
H8BA0.51590.89450.29690.031*
C9B0.70163 (14)0.86001 (8)0.32834 (8)0.0302 (3)
H9BA0.74010.89910.29720.036*
C10B0.77964 (14)0.80634 (8)0.37307 (9)0.0314 (3)
H10A0.87120.80770.37190.038*
C11B0.72309 (13)0.75061 (8)0.41959 (8)0.0274 (3)
H11A0.77600.71380.45100.033*
C12B0.58900 (12)0.74829 (7)0.42047 (7)0.0207 (3)
H12A0.55120.71010.45290.025*
C1C0.05938 (12)0.80597 (7)0.54716 (7)0.0200 (2)
H1CA0.00480.76970.51620.024*
C2C0.01632 (13)0.88294 (7)0.55423 (8)0.0256 (3)
H2CA0.06570.89940.52930.031*
C3C0.09726 (14)0.93606 (7)0.59929 (8)0.0271 (3)
H3CA0.07030.98960.60600.033*
C4C0.21554 (13)0.91095 (7)0.63380 (8)0.0234 (3)
H4CA0.27180.94720.66370.028*
C5C0.25326 (12)0.83049 (7)0.62454 (7)0.0175 (2)
C6C0.46296 (12)0.84853 (7)0.70677 (7)0.0215 (2)
H6CA0.51800.81190.74160.026*
H6CB0.41720.88390.74200.026*
C7C0.55110 (12)0.89975 (7)0.66056 (7)0.0182 (2)
C8C0.54335 (13)0.90071 (7)0.57792 (8)0.0216 (3)
H8CA0.47760.87070.54800.026*
C9C0.63066 (13)0.94512 (7)0.53805 (8)0.0251 (3)
H9CA0.62480.94500.48130.030*
C10C0.72632 (13)0.98958 (7)0.58141 (9)0.0262 (3)
H10B0.78581.02020.55440.031*
C11C0.73488 (14)0.98918 (8)0.66394 (9)0.0289 (3)
H11B0.80061.01930.69380.035*
C12C0.64761 (13)0.94482 (8)0.70305 (8)0.0264 (3)
H12B0.65360.94510.75980.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01023 (7)0.01481 (7)0.01645 (7)0.00088 (6)0.00155 (5)0.00061 (6)
O10.0134 (4)0.0241 (4)0.0185 (4)0.0016 (3)0.0008 (3)0.0026 (3)
O20.0127 (4)0.0226 (4)0.0211 (4)0.0008 (3)0.0010 (3)0.0001 (3)
O30.0223 (5)0.0413 (5)0.0234 (5)0.0010 (4)0.0104 (4)0.0052 (4)
O1A0.0111 (4)0.0145 (4)0.0221 (4)0.0022 (3)0.0011 (3)0.0023 (3)
O2A0.0153 (4)0.0168 (4)0.0215 (4)0.0003 (3)0.0029 (3)0.0001 (3)
O3A0.0108 (4)0.0159 (4)0.0300 (5)0.0005 (3)0.0009 (3)0.0018 (3)
N0.0152 (5)0.0192 (5)0.0212 (5)0.0023 (4)0.0036 (4)0.0009 (4)
N1B0.0122 (5)0.0159 (4)0.0186 (5)0.0014 (4)0.0025 (4)0.0003 (4)
N2B0.0193 (6)0.0219 (5)0.0215 (5)0.0045 (4)0.0014 (4)0.0043 (4)
N1C0.0143 (5)0.0167 (5)0.0185 (5)0.0012 (4)0.0029 (4)0.0009 (4)
N2C0.0180 (5)0.0170 (5)0.0253 (6)0.0014 (4)0.0003 (4)0.0052 (4)
C1A0.0130 (5)0.0173 (5)0.0126 (5)0.0034 (5)0.0034 (4)0.0007 (4)
C2A0.0136 (6)0.0181 (5)0.0157 (5)0.0013 (5)0.0028 (4)0.0016 (4)
C3A0.0131 (6)0.0229 (6)0.0389 (8)0.0017 (5)0.0007 (5)0.0029 (6)
C4A0.0130 (6)0.0234 (6)0.0199 (6)0.0023 (5)0.0011 (5)0.0003 (5)
C5A0.0187 (6)0.0204 (6)0.0213 (6)0.0087 (5)0.0013 (5)0.0007 (5)
C6A0.0225 (6)0.0157 (5)0.0176 (6)0.0041 (5)0.0030 (5)0.0003 (4)
C7A0.0161 (6)0.0159 (5)0.0132 (5)0.0027 (5)0.0035 (4)0.0003 (4)
C8A0.0215 (6)0.0144 (5)0.0167 (6)0.0004 (5)0.0042 (5)0.0004 (4)
C1B0.0149 (6)0.0204 (6)0.0221 (6)0.0002 (5)0.0026 (5)0.0010 (5)
C2B0.0171 (6)0.0275 (6)0.0245 (7)0.0018 (5)0.0004 (5)0.0047 (5)
C3B0.0231 (7)0.0307 (7)0.0191 (6)0.0052 (6)0.0025 (5)0.0018 (5)
C4B0.0258 (7)0.0218 (6)0.0187 (6)0.0023 (5)0.0042 (5)0.0009 (5)
C5B0.0146 (6)0.0157 (5)0.0202 (6)0.0032 (5)0.0036 (5)0.0010 (5)
C6B0.0232 (7)0.0243 (6)0.0471 (9)0.0016 (6)0.0009 (6)0.0174 (6)
C7B0.0218 (6)0.0172 (5)0.0167 (6)0.0049 (5)0.0037 (5)0.0026 (5)
C8B0.0331 (8)0.0228 (6)0.0209 (6)0.0066 (6)0.0049 (5)0.0023 (5)
C9B0.0355 (8)0.0312 (7)0.0260 (7)0.0129 (6)0.0139 (6)0.0010 (6)
C10B0.0227 (7)0.0376 (8)0.0355 (8)0.0064 (6)0.0108 (6)0.0058 (6)
C11B0.0222 (7)0.0289 (7)0.0311 (7)0.0008 (6)0.0022 (6)0.0003 (6)
C12B0.0234 (7)0.0193 (6)0.0200 (6)0.0037 (5)0.0047 (5)0.0004 (5)
C1C0.0149 (6)0.0224 (6)0.0230 (6)0.0020 (5)0.0031 (5)0.0019 (5)
C2C0.0214 (7)0.0245 (6)0.0315 (7)0.0079 (5)0.0054 (6)0.0048 (6)
C3C0.0311 (8)0.0180 (6)0.0339 (8)0.0083 (6)0.0116 (6)0.0036 (5)
C4C0.0257 (7)0.0174 (6)0.0280 (7)0.0002 (5)0.0070 (5)0.0018 (5)
C5C0.0176 (6)0.0171 (5)0.0185 (6)0.0004 (5)0.0054 (5)0.0012 (4)
C6C0.0223 (6)0.0233 (6)0.0184 (6)0.0018 (5)0.0002 (5)0.0033 (5)
C7C0.0182 (6)0.0148 (5)0.0215 (6)0.0021 (5)0.0012 (5)0.0030 (5)
C8C0.0209 (6)0.0226 (6)0.0206 (6)0.0016 (5)0.0018 (5)0.0025 (5)
C9C0.0258 (7)0.0263 (6)0.0235 (6)0.0066 (6)0.0039 (5)0.0032 (5)
C10C0.0247 (7)0.0180 (6)0.0376 (8)0.0026 (5)0.0110 (6)0.0010 (5)
C11C0.0257 (7)0.0261 (6)0.0353 (8)0.0074 (6)0.0048 (6)0.0118 (6)
C12C0.0281 (7)0.0283 (7)0.0228 (7)0.0041 (6)0.0025 (5)0.0085 (5)
Geometric parameters (Å, º) top
Ni—O1A1.9690 (8)C3B—C4B1.3708 (18)
Ni—N1B2.0555 (10)C3B—H3BA0.9500
Ni—O2A2.0565 (8)C4B—C5B1.4117 (17)
Ni—O12.1148 (8)C4B—H4BA0.9500
Ni—N1C2.1230 (9)C6B—C7B1.5037 (18)
Ni—O22.1476 (9)C6B—H6BA0.9900
O1—N1.2790 (13)C6B—H6BB0.9900
O2—N1.2772 (13)C7B—C12B1.3842 (17)
O3—N1.2218 (13)C7B—C8B1.4038 (16)
O1A—C1A1.3086 (13)C8B—C9B1.381 (2)
O2A—C8A1.2393 (14)C8B—H8BA0.9500
O3A—C2A1.3727 (13)C9B—C10B1.381 (2)
O3A—C3A1.4315 (15)C9B—H9BA0.9500
N1B—C1B1.3532 (15)C10B—C11B1.3839 (19)
N1B—C5B1.3594 (15)C10B—H10A0.9500
N2B—C5B1.3563 (15)C11B—C12B1.3901 (18)
N2B—C6B1.4536 (16)C11B—H11A0.9500
N2B—H2BN0.893 (15)C12B—H12A0.9500
N1C—C1C1.3491 (15)C1C—C2C1.3735 (17)
N1C—C5C1.3585 (15)C1C—H1CA0.9500
N2C—C5C1.3532 (16)C2C—C3C1.394 (2)
N2C—C6C1.4448 (16)C2C—H2CA0.9500
N2C—H2CN0.754 (14)C3C—C4C1.3692 (19)
C1A—C7A1.4176 (15)C3C—H3CA0.9500
C1A—C2A1.4273 (16)C4C—C5C1.4163 (16)
C2A—C4A1.3741 (17)C4C—H4CA0.9500
C3A—H3AA0.9800C6C—C7C1.5200 (17)
C3A—H3AB0.9800C6C—H6CA0.9900
C3A—H3AC0.9800C6C—H6CB0.9900
C4A—C5A1.4066 (17)C7C—C8C1.3840 (17)
C4A—H4AA0.9500C7C—C12C1.3928 (18)
C5A—C6A1.3639 (17)C8C—C9C1.3920 (18)
C5A—H5AA0.9500C8C—H8CA0.9500
C6A—C7A1.4174 (16)C9C—C10C1.3880 (19)
C6A—H6AA0.9500C9C—H9CA0.9500
C7A—C8A1.4325 (17)C10C—C11C1.3818 (19)
C8A—H8AA0.9500C10C—H10B0.9500
C1B—C2B1.3709 (17)C11C—C12C1.3845 (19)
C1B—H1BA0.9500C11C—H11B0.9500
C2B—C3B1.3958 (18)C12C—H12B0.9500
C2B—H2BA0.9500
O1A—Ni—N1B102.30 (4)C2B—C3B—H3BA120.0
O1A—Ni—O2A90.37 (3)C3B—C4B—C5B119.57 (12)
N1B—Ni—O2A88.57 (3)C3B—C4B—H4BA120.2
O1A—Ni—O1158.65 (3)C5B—C4B—H4BA120.2
N1B—Ni—O198.59 (4)N2B—C5B—N1B116.67 (11)
O2A—Ni—O185.76 (3)N2B—C5B—C4B122.99 (11)
O1A—Ni—N1C93.19 (3)N1B—C5B—C4B120.30 (11)
N1B—Ni—N1C92.92 (4)N2B—C6B—C7B114.90 (11)
O2A—Ni—N1C175.76 (3)N2B—C6B—H6BA108.5
O1—Ni—N1C90.09 (3)C7B—C6B—H6BA108.5
O1A—Ni—O297.83 (3)N2B—C6B—H6BB108.5
N1B—Ni—O2159.29 (4)C7B—C6B—H6BB108.5
O2A—Ni—O286.49 (3)H6BA—C6B—H6BB107.5
O1—Ni—O261.01 (3)C12B—C7B—C8B118.26 (12)
N1C—Ni—O290.74 (3)C12B—C7B—C6B123.69 (11)
N—O1—Ni92.38 (6)C8B—C7B—C6B118.05 (11)
N—O2—Ni90.93 (6)C9B—C8B—C7B120.45 (13)
C1A—O1A—Ni126.23 (7)C9B—C8B—H8BA119.8
C8A—O2A—Ni124.12 (8)C7B—C8B—H8BA119.8
C2A—O3A—C3A116.64 (9)C8B—C9B—C10B120.75 (12)
O3—N—O2122.38 (10)C8B—C9B—H9BA119.6
O3—N—O1121.97 (10)C10B—C9B—H9BA119.6
O2—N—O1115.65 (10)C9B—C10B—C11B119.33 (13)
C1B—N1B—C5B118.41 (10)C9B—C10B—H10A120.3
C1B—N1B—Ni115.38 (8)C11B—C10B—H10A120.3
C5B—N1B—Ni126.14 (8)C10B—C11B—C12B120.17 (13)
C5B—N2B—C6B124.80 (11)C10B—C11B—H11A119.9
C5B—N2B—H2BN117.1 (9)C12B—C11B—H11A119.9
C6B—N2B—H2BN116.0 (9)C7B—C12B—C11B121.02 (11)
C1C—N1C—C5C117.93 (10)C7B—C12B—H12A119.5
C1C—N1C—Ni114.83 (8)C11B—C12B—H12A119.5
C5C—N1C—Ni126.99 (8)N1C—C1C—C2C124.33 (12)
C5C—N2C—C6C124.47 (10)N1C—C1C—H1CA117.8
C5C—N2C—H2CN117.6 (12)C2C—C1C—H1CA117.8
C6C—N2C—H2CN116.0 (12)C1C—C2C—C3C117.60 (12)
O1A—C1A—C7A124.58 (10)C1C—C2C—H2CA121.2
O1A—C1A—C2A118.33 (10)C3C—C2C—H2CA121.2
C7A—C1A—C2A117.09 (10)C4C—C3C—C2C119.97 (12)
O3A—C2A—C4A124.92 (11)C4C—C3C—H3CA120.0
O3A—C2A—C1A113.64 (9)C2C—C3C—H3CA120.0
C4A—C2A—C1A121.43 (10)C3C—C4C—C5C119.38 (12)
O3A—C3A—H3AA109.5C3C—C4C—H4CA120.3
O3A—C3A—H3AB109.5C5C—C4C—H4CA120.3
H3AA—C3A—H3AB109.5N2C—C5C—N1C117.11 (10)
O3A—C3A—H3AC109.5N2C—C5C—C4C122.10 (11)
H3AA—C3A—H3AC109.5N1C—C5C—C4C120.77 (11)
H3AB—C3A—H3AC109.5N2C—C6C—C7C116.06 (10)
C2A—C4A—C5A120.41 (11)N2C—C6C—H6CA108.3
C2A—C4A—H4AA119.8C7C—C6C—H6CA108.3
C5A—C4A—H4AA119.8N2C—C6C—H6CB108.3
C6A—C5A—C4A119.96 (11)C7C—C6C—H6CB108.3
C6A—C5A—H5AA120.0H6CA—C6C—H6CB107.4
C4A—C5A—H5AA120.0C8C—C7C—C12C118.51 (12)
C5A—C6A—C7A120.77 (11)C8C—C7C—C6C122.73 (11)
C5A—C6A—H6AA119.6C12C—C7C—C6C118.70 (11)
C7A—C6A—H6AA119.6C7C—C8C—C9C120.85 (12)
C6A—C7A—C1A120.29 (11)C7C—C8C—H8CA119.6
C6A—C7A—C8A117.17 (10)C9C—C8C—H8CA119.6
C1A—C7A—C8A122.53 (10)C10C—C9C—C8C119.83 (12)
O2A—C8A—C7A128.59 (10)C10C—C9C—H9CA120.1
O2A—C8A—H8AA115.7C8C—C9C—H9CA120.1
C7A—C8A—H8AA115.7C11C—C10C—C9C119.83 (12)
N1B—C1B—C2B123.88 (12)C11C—C10C—H10B120.1
N1B—C1B—H1BA118.1C9C—C10C—H10B120.1
C2B—C1B—H1BA118.1C10C—C11C—C12C119.91 (12)
C1B—C2B—C3B117.65 (12)C10C—C11C—H11B120.0
C1B—C2B—H2BA121.2C12C—C11C—H11B120.0
C3B—C2B—H2BA121.2C11C—C12C—C7C121.07 (12)
C4B—C3B—C2B119.99 (12)C11C—C12C—H12B119.5
C4B—C3B—H3BA120.0C7C—C12C—H12B119.5
O1A—Ni—O1—N7.28 (12)C5A—C6A—C7A—C8A178.42 (11)
N1B—Ni—O1—N175.29 (6)O1A—C1A—C7A—C6A177.56 (10)
O2A—Ni—O1—N87.39 (6)C2A—C1A—C7A—C6A2.26 (16)
N1C—Ni—O1—N91.74 (6)O1A—C1A—C7A—C8A2.82 (17)
O2—Ni—O1—N0.94 (6)C2A—C1A—C7A—C8A177.37 (10)
O1A—Ni—O2—N176.04 (6)Ni—O2A—C8A—C7A0.24 (17)
N1B—Ni—O2—N9.64 (12)C6A—C7A—C8A—O2A171.95 (11)
O2A—Ni—O2—N86.15 (6)C1A—C7A—C8A—O2A7.68 (19)
O1—Ni—O2—N0.94 (6)C5B—N1B—C1B—C2B2.57 (17)
N1C—Ni—O2—N90.63 (6)Ni—N1B—C1B—C2B174.60 (10)
N1B—Ni—O1A—C1A109.42 (9)N1B—C1B—C2B—C3B1.00 (18)
O2A—Ni—O1A—C1A20.80 (9)C1B—C2B—C3B—C4B1.98 (18)
O1—Ni—O1A—C1A58.45 (13)C2B—C3B—C4B—C5B0.50 (18)
N1C—Ni—O1A—C1A156.89 (9)C6B—N2B—C5B—N1B163.03 (12)
O2—Ni—O1A—C1A65.70 (9)C6B—N2B—C5B—C4B19.34 (19)
O1A—Ni—O2A—C8A11.28 (9)C1B—N1B—C5B—N2B172.60 (10)
N1B—Ni—O2A—C8A113.58 (9)Ni—N1B—C5B—N2B10.56 (14)
O1—Ni—O2A—C8A147.70 (9)C1B—N1B—C5B—C4B5.09 (16)
N1C—Ni—O2A—C8A135.8 (5)Ni—N1B—C5B—C4B171.74 (8)
O2—Ni—O2A—C8A86.54 (9)C3B—C4B—C5B—N2B173.40 (11)
Ni—O2—N—O3178.85 (10)C3B—C4B—C5B—N1B4.15 (17)
Ni—O2—N—O11.51 (9)C5B—N2B—C6B—C7B144.38 (12)
Ni—O1—N—O3178.82 (10)N2B—C6B—C7B—C12B6.64 (19)
Ni—O1—N—O21.54 (9)N2B—C6B—C7B—C8B174.19 (12)
O1A—Ni—N1B—C1B146.82 (8)C12B—C7B—C8B—C9B0.47 (18)
O2A—Ni—N1B—C1B56.75 (8)C6B—C7B—C8B—C9B179.68 (13)
O1—Ni—N1B—C1B28.74 (8)C7B—C8B—C9B—C10B0.7 (2)
N1C—Ni—N1B—C1B119.28 (8)C8B—C9B—C10B—C11B1.3 (2)
O2—Ni—N1B—C1B19.40 (14)C9B—C10B—C11B—C12B0.7 (2)
O1A—Ni—N1B—C5B36.26 (9)C8B—C7B—C12B—C11B1.06 (18)
O2A—Ni—N1B—C5B126.33 (9)C6B—C7B—C12B—C11B179.78 (13)
O1—Ni—N1B—C5B148.18 (9)C10B—C11B—C12B—C7B0.49 (19)
N1C—Ni—N1B—C5B57.64 (9)C5C—N1C—C1C—C2C1.05 (18)
O2—Ni—N1B—C5B157.52 (9)Ni—N1C—C1C—C2C173.49 (10)
O1A—Ni—N1C—C1C150.18 (8)N1C—C1C—C2C—C3C0.46 (19)
N1B—Ni—N1C—C1C47.67 (8)C1C—C2C—C3C—C4C0.72 (19)
O2A—Ni—N1C—C1C62.8 (5)C2C—C3C—C4C—C5C1.24 (19)
O1—Ni—N1C—C1C50.93 (8)C6C—N2C—C5C—N1C179.54 (10)
O2—Ni—N1C—C1C111.94 (8)C6C—N2C—C5C—C4C1.87 (19)
O1A—Ni—N1C—C5C35.87 (10)C1C—N1C—C5C—N2C179.08 (10)
N1B—Ni—N1C—C5C138.37 (10)Ni—N1C—C5C—N2C5.29 (15)
O2A—Ni—N1C—C5C111.2 (5)C1C—N1C—C5C—C4C0.48 (16)
O1—Ni—N1C—C5C123.02 (10)Ni—N1C—C5C—C4C173.31 (9)
O2—Ni—N1C—C5C62.02 (10)C3C—C4C—C5C—N2C177.89 (12)
Ni—O1A—C1A—C7A19.94 (15)C3C—C4C—C5C—N1C0.64 (18)
Ni—O1A—C1A—C2A160.25 (8)C5C—N2C—C6C—C7C79.83 (15)
C3A—O3A—C2A—C4A0.89 (17)N2C—C6C—C7C—C8C1.43 (17)
C3A—O3A—C2A—C1A179.98 (10)N2C—C6C—C7C—C12C178.40 (11)
O1A—C1A—C2A—O3A3.61 (15)C12C—C7C—C8C—C9C0.57 (18)
C7A—C1A—C2A—O3A176.56 (10)C6C—C7C—C8C—C9C176.41 (11)
O1A—C1A—C2A—C4A177.22 (11)C7C—C8C—C9C—C10C0.49 (18)
C7A—C1A—C2A—C4A2.60 (16)C8C—C9C—C10C—C11C0.38 (19)
O3A—C2A—C4A—C5A177.20 (11)C9C—C10C—C11C—C12C0.37 (19)
C1A—C2A—C4A—C5A1.86 (18)C10C—C11C—C12C—C7C0.5 (2)
C2A—C4A—C5A—C6A0.70 (18)C8C—C7C—C12C—C11C0.56 (19)
C4A—C5A—C6A—C7A0.39 (18)C6C—C7C—C12C—C11C176.54 (12)
C5A—C6A—C7A—C1A1.23 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3AC···O1i0.982.573.3537 (15)137
C4A—H4AA···O1i0.952.553.4357 (15)155
C4B—H4BA···O2ii0.952.543.4308 (15)157
C6B—H6BB···O2ii0.992.573.4670 (17)151
N2B—H2BN···O1A0.893 (15)2.088 (15)2.9215 (14)154.9 (12)
N2C—H2CN···O1A0.754 (14)2.056 (14)2.7655 (13)156.8 (16)
N2C—H2CN···O3A0.754 (14)2.669 (14)3.2124 (13)130.8 (13)
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H7O3)(NO3)(C12H12N2)2]
Mr640.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)10.3522 (2), 16.7539 (3), 16.8132 (3)
β (°) 95.5831 (17)
V3)2902.25 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.48 × 0.41 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur with a Ruby (Gemini Mo) detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.724, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
21278, 9636, 6913
Rint0.024
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 0.92
No. of reflections9636
No. of parameters404
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.42

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni—O1A1.9690 (8)Ni—O12.1148 (8)
Ni—N1B2.0555 (10)Ni—N1C2.1230 (9)
Ni—O2A2.0565 (8)Ni—O22.1476 (9)
O1A—Ni—N1B102.30 (4)O1—Ni—N1C90.09 (3)
O1A—Ni—O2A90.37 (3)O1A—Ni—O297.83 (3)
N1B—Ni—O2A88.57 (3)N1B—Ni—O2159.29 (4)
O1A—Ni—O1158.65 (3)O2A—Ni—O286.49 (3)
N1B—Ni—O198.59 (4)O1—Ni—O261.01 (3)
O2A—Ni—O185.76 (3)N1C—Ni—O290.74 (3)
O1A—Ni—N1C93.19 (3)N—O1—Ni92.38 (6)
N1B—Ni—N1C92.92 (4)N—O2—Ni90.93 (6)
O2A—Ni—N1C175.76 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3AC···O1i0.982.573.3537 (15)137.2
C4A—H4AA···O1i0.952.553.4357 (15)154.5
C4B—H4BA···O2ii0.952.543.4308 (15)156.6
C6B—H6BB···O2ii0.992.573.4670 (17)150.8
N2B—H2BN···O1A0.893 (15)2.088 (15)2.9215 (14)154.9 (12)
N2C—H2CN···O1A0.754 (14)2.056 (14)2.7655 (13)156.8 (16)
N2C—H2CN···O3A0.754 (14)2.669 (14)3.2124 (13)130.8 (13)
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernández-Fernández, M., Bastida, R., Maćias, A., Valencia, L. & Pérez-Lourido, P. (2006). Polyhedron, 25, 783–792.  Google Scholar
First citationGao, H., Huang, Z., Song, K., Liu, F., Long, J., Hu, H. & Wu, Q. (2008). J. Polym. Sci. Part A Polym. Chem. 46, 1618–1628.  Google Scholar
First citationGultneh, Y., Khan, A. R., Ahvazi, B. & Butcher, R. J. (2008). Polyhedron, 17, 3351–3360.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokii, T., Emori, S. & Muto, Y. (1979). Bull. Chem. Soc. Jpn, 52, 2114–2119.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1193-m1194
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds