metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Amino-4,6-di­methyl­pyrimidine-κN1)(2-amino-4-methyl­pyrimidine-κN1)silver(I) perchlorate

aDepartment of Chemistry, Mudanjiang Teachers College, Mudanjiang 157012, People's Republic of China
*Correspondence e-mail: youngflower7799@yahoo.com.cn

(Received 1 August 2009; accepted 1 September 2009; online 5 September 2009)

Colourless crystals of the title mixed ligand complex, [Ag(C5H7N3)(C6H9N3)]ClO4, were obtained from a solution of 2-amino-4-methyl­pyrimidine, 2-amino-4,6-dimethyl­pyrim­idine and silver perchlorate in water and methanol. The crystal structure is stabilized by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds and ππ stacking inter­actions of the aromatic rings of the two ligands [inter­planar distance = 3.652 (10) Å]. The AgI atom shows a linear coordination [N—Ag—N = 174.6 (1)°].

Related literature

For N—Ag—N geometry, see: Greenwood & Earnshaw (1997[Greenwood, N. N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. Oxford: Pergamon Press.]). For ππ stacking, see: Munakata et al. (2000[Munakata, M., Wu, L. P. & Ning, G. L. (2000). Coord. Chem. Rev. 198, 171-203.]). For silver coordination networks, see: Shimizu et al. (1999[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485-1486.]); Seward et al. (2004[Seward, C., Jia, W. L., Wang, R. Y., Enright, G. D. & Wang, S. (2004). Angew. Chem. Int. Ed. Engl. 43, 2933-2936.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C5H7N3)(C6H9N3)]ClO4

  • Mr = 439.62

  • Monoclinic, P 21 /n

  • a = 12.3952 (5) Å

  • b = 7.8324 (4) Å

  • c = 15.9956 (5) Å

  • β = 94.339 (3)°

  • V = 1548.47 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.25 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.553, Tmax = 0.678

  • 8880 measured reflections

  • 2678 independent reflections

  • 2254 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.07

  • 2678 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5C⋯O4i 0.86 2.32 3.131 (5) 158
N5—H5B⋯N3ii 0.86 2.20 3.050 (5) 172
N2—H2B⋯O2 0.86 2.50 3.077 (5) 126
N2—H2A⋯N6iii 0.86 2.30 3.147 (5) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure of the title compound (I) comprises of uncoordinated ClO4- anions and [Ag(2-amino-4-methylpyrimidine)(2-amino-4,6-dimethylpyrimidine)]+ cations. The central silver(I) ion, possessing its vacant s and p orbitals, coordinated to two nitrogen atoms from those two different pyrimidine derivative ligands, presenting nearly linear N-Ag-N geometry Greenwood et al., 1997). An one dimensional framework was built by multiple intermolecular N–H–N hydrogen bonds along one of the diagonals of a and c axial plane, while pi–pi stacking interaction of the aromatic rings with an interplane distance 3.65 Å stabilized the whole crystal structure (Munakata et al., 2000).

Related literature top

For N—Ag—N geometry, see: Greenwood & Earnshaw et al. (1997). For ππ stacking, see: Munakata et al. (2000). For related literature [on what subject?], see: Shimizu et al. (1999); Seward et al. (2004).

Experimental top

A solution of 108 mg (1 mmol) 2-amino-4-methylpyrimidine and 123 mg (1 mmol) of 2-amino-4,6-dimethylpyrimidine in distilled water-CH3OH (1:1 v/v, 10 mL) was added to an aqueous solution of AgClO4 208 mg (1 mmol) in 3 ml distilled water at 333 K. A small amount of white precipitate was removed from the resulting solution. Prism colorless crystals were obtained by slow evaporation at room temperature over a period of 3 days.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C–H = 0.96–0.98 Å, and N–H = 0.86 Å, and Uiso(H) = 1.2 or 1.5Ueq(C,N). The final difference map had a peak near Ag1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of molecules, viewed down the b axis, with the weak interactions shown as dashed lines.
(2-Amino-4,6-dimethylpyrimidine-κN1)(2-amino-4-methylpyrimidine- κN1)silver(I) perchlorate top
Crystal data top
[Ag(C5H7N3)(C6H9N3)]ClO4F(000) = 880
Mr = 439.62Dx = 1.886 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2795 reflections
a = 12.3952 (5) Åθ = 2.6–32.8°
b = 7.8324 (4) ŵ = 1.50 mm1
c = 15.9956 (5) ÅT = 120 K
β = 94.339 (3)°Prism, colourless
V = 1548.47 (11) Å30.40 × 0.40 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2678 independent reflections
Radiation source: fine-focus sealed tube2254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.553, Tmax = 0.678k = 89
8880 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0544P)2 + 2.3112P]
where P = (Fo2 + 2Fc2)/3
2678 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ag(C5H7N3)(C6H9N3)]ClO4V = 1548.47 (11) Å3
Mr = 439.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3952 (5) ŵ = 1.50 mm1
b = 7.8324 (4) ÅT = 120 K
c = 15.9956 (5) Å0.40 × 0.40 × 0.25 mm
β = 94.339 (3)°
Data collection top
Bruker APEXII
diffractometer
2678 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2254 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.678Rint = 0.028
8880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 1.36 e Å3
2678 reflectionsΔρmin = 0.53 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.19079 (3)0.45483 (5)0.720510 (19)0.04423 (15)
C10.1554 (4)0.3648 (7)0.3245 (3)0.0544 (12)
H1A0.11080.26820.30870.082*
H1B0.22610.34870.30510.082*
H1C0.12350.46630.29980.082*
C20.1644 (3)0.3818 (5)0.4169 (3)0.0373 (9)
C30.0929 (3)0.3330 (5)0.5423 (2)0.0332 (9)
C40.2530 (4)0.4782 (6)0.5433 (3)0.0398 (10)
H4A0.31060.53450.57200.048*
C50.2516 (4)0.4648 (6)0.4585 (3)0.0410 (10)
H5A0.30730.50970.42940.049*
C60.3056 (3)0.4035 (5)0.8973 (2)0.0316 (8)
C70.1481 (3)0.5552 (5)0.9020 (3)0.0369 (9)
C80.0587 (4)0.6489 (7)0.8581 (3)0.0566 (13)
H8A0.08710.73650.82400.085*
H8B0.01490.70000.89830.085*
H8C0.01530.57170.82310.085*
C90.1577 (4)0.5429 (6)0.9877 (3)0.0419 (10)
H9A0.10750.59531.01970.050*
C100.2424 (4)0.4521 (5)1.0253 (3)0.0380 (9)
C110.2548 (5)0.4273 (8)1.1177 (3)0.0606 (14)
H11A0.32690.45821.13840.091*
H11B0.24200.30971.13070.091*
H11C0.20370.49791.14370.091*
N10.2212 (3)0.4824 (4)0.8553 (2)0.0319 (7)
N20.3831 (3)0.3336 (4)0.8522 (2)0.0383 (8)
H2A0.43660.27980.87740.046*
H2B0.37850.34300.79850.046*
N30.3176 (3)0.3841 (5)0.9803 (2)0.0365 (8)
N40.1743 (3)0.4133 (4)0.5875 (2)0.0350 (8)
N50.0136 (3)0.2635 (5)0.5824 (2)0.0455 (9)
H5B0.03860.21130.55450.055*
H5C0.01440.27080.63600.055*
N60.0857 (3)0.3161 (4)0.4580 (2)0.0361 (8)
Cl10.50494 (9)0.64276 (14)0.68793 (6)0.0412 (3)
O10.4928 (3)0.6816 (5)0.6012 (2)0.0629 (10)
O20.4001 (3)0.6130 (5)0.7187 (2)0.0617 (9)
O30.5697 (3)0.4961 (5)0.7031 (3)0.0666 (10)
O40.5523 (4)0.7822 (6)0.7327 (3)0.0775 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0420 (2)0.0623 (3)0.02780 (19)0.00167 (16)0.00078 (13)0.00457 (14)
C10.062 (3)0.071 (3)0.030 (2)0.007 (3)0.003 (2)0.006 (2)
C20.044 (2)0.037 (2)0.031 (2)0.0077 (19)0.0058 (18)0.0064 (17)
C30.036 (2)0.035 (2)0.0282 (19)0.0065 (17)0.0038 (16)0.0023 (16)
C40.035 (2)0.043 (2)0.041 (2)0.0017 (19)0.0023 (18)0.0003 (19)
C50.041 (2)0.045 (2)0.038 (2)0.001 (2)0.0064 (19)0.0027 (19)
C60.036 (2)0.032 (2)0.0266 (19)0.0052 (17)0.0030 (16)0.0023 (15)
C70.038 (2)0.031 (2)0.041 (2)0.0037 (18)0.0006 (18)0.0006 (17)
C80.060 (3)0.062 (3)0.047 (3)0.008 (3)0.001 (2)0.007 (2)
C90.049 (3)0.038 (2)0.041 (2)0.005 (2)0.018 (2)0.0107 (19)
C100.045 (2)0.037 (2)0.032 (2)0.004 (2)0.0037 (18)0.0054 (17)
C110.074 (4)0.078 (4)0.031 (2)0.008 (3)0.009 (2)0.006 (2)
N10.0344 (17)0.0330 (17)0.0285 (16)0.0038 (14)0.0044 (14)0.0037 (13)
N20.0432 (19)0.047 (2)0.0250 (16)0.0066 (16)0.0074 (14)0.0008 (14)
N30.0381 (18)0.0430 (19)0.0288 (17)0.0001 (16)0.0050 (14)0.0035 (15)
N40.0326 (17)0.0402 (19)0.0318 (17)0.0028 (15)0.0010 (14)0.0000 (14)
N50.047 (2)0.063 (2)0.0269 (17)0.0130 (19)0.0049 (15)0.0005 (17)
N60.0416 (19)0.0403 (19)0.0264 (16)0.0019 (16)0.0011 (14)0.0031 (14)
Cl10.0467 (6)0.0444 (6)0.0331 (5)0.0052 (5)0.0068 (4)0.0038 (4)
O10.064 (2)0.090 (3)0.0356 (17)0.004 (2)0.0119 (16)0.0148 (17)
O20.053 (2)0.086 (3)0.049 (2)0.0050 (19)0.0193 (16)0.0121 (18)
O30.067 (2)0.058 (2)0.074 (3)0.0125 (18)0.000 (2)0.0080 (19)
O40.092 (3)0.077 (3)0.063 (2)0.031 (2)0.001 (2)0.007 (2)
Geometric parameters (Å, º) top
Ag1—N42.146 (3)C7—C81.465 (7)
Ag1—N12.171 (3)C8—H8A0.9600
C1—C21.479 (6)C8—H8B0.9600
C1—H1A0.9600C8—H8C0.9600
C1—H1B0.9600C9—C101.370 (7)
C1—H1C0.9600C9—H9A0.9300
C2—N61.322 (6)C10—N31.330 (6)
C2—C51.387 (6)C10—C111.487 (6)
C3—N51.330 (6)C11—H11A0.9600
C3—N61.351 (5)C11—H11B0.9600
C3—N41.352 (5)C11—H11C0.9600
C4—N41.347 (6)N2—H2A0.8600
C4—C51.360 (6)N2—H2B0.8600
C4—H4A0.9300N5—H5B0.8600
C5—H5A0.9300N5—H5C0.8600
C6—N31.334 (5)Cl1—O41.409 (4)
C6—N11.350 (5)Cl1—O31.412 (4)
C6—N21.359 (5)Cl1—O11.417 (3)
C7—N11.344 (6)Cl1—O21.443 (4)
C7—C91.370 (6)
N4—Ag1—N1174.61 (13)C7—C9—H9A120.6
C2—C1—H1A109.5C10—C9—H9A120.6
C2—C1—H1B109.5N3—C10—C9121.0 (4)
H1A—C1—H1B109.5N3—C10—C11117.4 (4)
C2—C1—H1C109.5C9—C10—C11121.5 (4)
H1A—C1—H1C109.5C10—C11—H11A109.5
H1B—C1—H1C109.5C10—C11—H11B109.5
N6—C2—C5121.4 (4)H11A—C11—H11B109.5
N6—C2—C1117.3 (4)C10—C11—H11C109.5
C5—C2—C1121.3 (4)H11A—C11—H11C109.5
N5—C3—N6116.4 (4)H11B—C11—H11C109.5
N5—C3—N4118.8 (4)C7—N1—C6116.6 (3)
N6—C3—N4124.7 (4)C7—N1—Ag1121.4 (3)
N4—C4—C5122.7 (4)C6—N1—Ag1121.2 (3)
N4—C4—H4A118.6C6—N2—H2A120.0
C5—C4—H4A118.6C6—N2—H2B120.0
C4—C5—C2117.7 (4)H2A—N2—H2B120.0
C4—C5—H5A121.1C10—N3—C6117.6 (4)
C2—C5—H5A121.1C4—N4—C3115.8 (4)
N3—C6—N1124.8 (4)C4—N4—Ag1116.4 (3)
N3—C6—N2116.9 (4)C3—N4—Ag1127.7 (3)
N1—C6—N2118.2 (3)C3—N5—H5B120.0
N1—C7—C9121.1 (4)C3—N5—H5C120.0
N1—C7—C8117.6 (4)H5B—N5—H5C120.0
C9—C7—C8121.3 (4)C2—N6—C3117.6 (4)
C7—C8—H8A109.5O4—Cl1—O3109.5 (3)
C7—C8—H8B109.5O4—Cl1—O1109.9 (2)
H8A—C8—H8B109.5O3—Cl1—O1111.1 (3)
C7—C8—H8C109.5O4—Cl1—O2107.6 (3)
H8A—C8—H8C109.5O3—Cl1—O2109.0 (3)
H8B—C8—H8C109.5O1—Cl1—O2109.6 (2)
C7—C9—C10118.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5C···O4i0.862.323.131 (5)158
N5—H5B···N3ii0.862.203.050 (5)172
N2—H2B···O20.862.503.077 (5)126
N2—H2A···N6iii0.862.303.147 (5)169
C1—H1C···O4iv0.962.383.339 (7)177
C4—H4A···O10.932.553.437 (6)160
C4—H4A···O20.932.593.396 (6)145
C8—H8C···O4i0.962.553.456 (7)157
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ag(C5H7N3)(C6H9N3)]ClO4
Mr439.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)12.3952 (5), 7.8324 (4), 15.9956 (5)
β (°) 94.339 (3)
V3)1548.47 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.40 × 0.40 × 0.25
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.553, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
8880, 2678, 2254
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.07
No. of reflections2678
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.53

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5C···O4i0.862.323.131 (5)158
N5—H5B···N3ii0.862.203.050 (5)172
N2—H2B···O20.862.503.077 (5)126
N2—H2A···N6iii0.862.303.147 (5)169
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author thanks the Natural Science Foundation of Heilongjiang Province for financial support.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenwood, N. N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. Oxford: Pergamon Press.  Google Scholar
First citationMunakata, M., Wu, L. P. & Ning, G. L. (2000). Coord. Chem. Rev. 198, 171–203.  Web of Science CrossRef CAS Google Scholar
First citationSeward, C., Jia, W. L., Wang, R. Y., Enright, G. D. & Wang, S. (2004). Angew. Chem. Int. Ed. Engl. 43, 2933–2936.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds