organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

15-Hy­droxy­ethyl-19-iso­propyl-5,9-di­methyl-14,16-dioxo-15-aza­penta­cyclo­[10.5.2.01,10.04,9.013,17]nona­dec-18-ene-5-carboxylic acid

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: songzq@hotmail.com

(Received 14 August 2009; accepted 19 August 2009; online 12 September 2009)

The title compound, C26H37NO5, which was synthesized from monoethano­lamine and maleopimaric acid, consists of two fused and unbridged cyclo­hexane rings. They form a trans ring junction with a chair conformation. The two methyl groups are in axial positions. In the crystal, inter­molecular O—H⋯O hydrogen bonds link adjacent mol­ecules into a layer structure. Two C—H⋯O interactions are also present.

Related literature

For the synthesis of maleopimaric acid derivatives, see: Walter & Ray (1967[Walter, H. S. & Ray, A. L. (1967). J. Chem. Eng. Data, 12, 267-268.]). For the use of the title compound in varnishes and surface coatings, see: Penczek (1970[Penczek, P. (1970). Rocz. Chem. 44, 1815-1818.]); Xiao (2003[Xiao, J. G. (2003). J. Hunan City Univ. (Natur. Sci.), 24, 92-93.]).

[Scheme 1]

Experimental

Crystal data
  • C26H37NO5

  • Mr = 443.57

  • Monoclinic, P 21

  • a = 12.274 (3) Å

  • b = 6.9550 (14) Å

  • c = 14.445 (3) Å

  • β = 102.22 (3)°

  • V = 1205.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.992

  • 2487 measured reflections

  • 2373 independent reflections

  • 1744 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.189

  • S = 1.00

  • 2373 reflections

  • 271 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2c⋯O5i 0.85 2.16 3.010 (9) 178
O5—H5a⋯O4ii 0.85 2.34 3.076 (10) 145
C10—H10A⋯O3iii 0.98 2.55 3.470 (6) 157
C14—H14A⋯O3iii 0.98 2.38 3.316 (7) 159
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Maleopimaric acid is a readily obtainable compound, which is made by the reaction of maleic anhydride and rosin. A number of new derivatives of maleopimaric acid have been prepared (Walter, 1967). The title compound is one of modified products of maleopimaric acid, which could be used in varnishes and surface coatings (Xiao, 2003). Although, it has been prepared by Penczek P. (Penczek, 1970), the crystal structure of it has not yet been reported. In this work, we describe the crystal structure of the title compound. The molecular structure is shown in Fig. 1 and the crystal packing in Fig.2.

Related literature top

For the synthesis of maleopimaric acid derivatives, see: Walter & Ray (1967). For the use of the title compound in varnishes and surface coatings, see: Penczek (1970); Xiao (2003).

Experimental top

Maleopimaric acid (80.0 g) and monoethanolamine (35.8 g) were slowly heated to 130 degrees centigrade and the reaction was carried out for 2 h. Subsequently, the resulting acrylic modified rosin was cooled to room temperature. Then acetone (150 ml) was added dropwise successively with constant stirring. After dropping the mixture was stirred for another 15 minutes and then filtered. The title compound was precipitated from the solution. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. The crystal data were collected on an Enraf–Nonius CAD-4 difractometer. Data collection and cell refinement were performed using Enraf–Nonius CAD-4 Software.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.98 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing displacement ellipsoids at the 15% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound.
15-Hydroxyethyl-19-isopropyl-5,9-dimethyl-14,16-dioxo-15- azapentacyclo[10.5.2.01,10.04,9.013,17]nonadec-18-ene-5-carboxylic acid top
Crystal data top
C26H37NO5F(000) = 480
Mr = 443.57Dx = 1.222 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 12.274 (3) Åθ = 9–12°
b = 6.9550 (14) ŵ = 0.08 mm1
c = 14.445 (3) ÅT = 293 K
β = 102.22 (3)°Block, colorless
V = 1205.2 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1744 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.2°, θmin = 1.4°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.975, Tmax = 0.992l = 1716
2487 measured reflections3 standard reflections every 200 reflections
2373 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.09P)2 + P]
where P = (Fo2 + 2Fc2)/3
2373 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.44 e Å3
22 restraintsΔρmin = 0.33 e Å3
Crystal data top
C26H37NO5V = 1205.2 (4) Å3
Mr = 443.57Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.274 (3) ŵ = 0.08 mm1
b = 6.9550 (14) ÅT = 293 K
c = 14.445 (3) Å0.30 × 0.20 × 0.10 mm
β = 102.22 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1744 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.975, Tmax = 0.9923 standard reflections every 200 reflections
2487 measured reflections intensity decay: 1%
2373 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07422 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
2373 reflectionsΔρmin = 0.33 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.7569 (3)0.2774 (8)0.9683 (3)0.0527 (12)
C10.4892 (4)0.2559 (8)0.8217 (3)0.0363 (11)
O10.0325 (6)0.1069 (12)0.7369 (5)0.123 (2)
C20.4169 (4)0.1064 (8)0.8588 (3)0.0423 (12)
H2A0.39180.16020.91260.051*
H2B0.46220.00550.88070.051*
O20.0550 (5)0.1493 (10)0.8226 (4)0.108
H2C0.00390.09290.84390.162*
O30.6287 (3)0.0996 (9)1.0198 (3)0.0839 (18)
C30.3148 (4)0.0426 (9)0.7842 (4)0.0532 (14)
H3A0.33900.02420.73310.064*
H3B0.27000.04530.81260.064*
C40.2447 (4)0.2185 (7)0.7446 (4)0.0459 (13)
H4A0.23420.29100.80030.055*
O40.8467 (4)0.5151 (11)0.8999 (4)0.110 (2)
C50.1243 (5)0.1684 (10)0.6886 (5)0.0681 (17)
O50.8772 (5)0.0458 (10)0.9037 (4)0.105
H5A0.88260.15840.88220.126*
C60.0641 (5)0.3588 (11)0.6566 (6)0.077 (2)
H6A0.00870.33020.61760.093*
H6B0.05250.42780.71210.093*
C70.1256 (6)0.4859 (10)0.6020 (5)0.074 (2)
H7A0.08420.60430.58560.089*
H7B0.13220.42240.54370.089*
C80.2398 (5)0.5316 (9)0.6592 (4)0.0623 (17)
H8A0.23180.60510.71450.075*
H8B0.27800.61230.62150.075*
C90.3132 (5)0.3529 (8)0.6926 (3)0.0448 (13)
C100.4166 (4)0.4214 (7)0.7671 (3)0.0381 (11)
H10A0.38710.49270.81500.046*
C110.4956 (5)0.5621 (8)0.7305 (4)0.0577 (15)
H11A0.47490.56890.66200.069*
H11B0.48770.68970.75540.069*
C120.6177 (5)0.4975 (9)0.7605 (4)0.0587 (16)
H12A0.66690.58340.73440.070*
C130.6456 (5)0.5035 (10)0.8703 (4)0.0613 (16)
H13A0.63250.63310.89240.074*
C140.5700 (4)0.3595 (8)0.9058 (3)0.0413 (12)
H14A0.52490.42920.94320.050*
C150.5630 (4)0.1723 (7)0.7609 (3)0.0374 (11)
H15A0.56160.04240.74550.045*
C160.6300 (5)0.2951 (10)0.7306 (4)0.0539 (15)
C170.7128 (7)0.2472 (14)0.6679 (5)0.083 (2)
H17A0.78660.28920.70190.099*
C180.6885 (7)0.3491 (16)0.5733 (6)0.098
H18A0.68110.48450.58310.148*
H18B0.62050.30020.53520.148*
H18C0.74870.32710.54150.148*
C190.7198 (7)0.0228 (16)0.6504 (6)0.103 (3)
H19A0.77200.00130.61070.155*
H19B0.64770.02430.61980.155*
H19C0.74410.04160.70990.155*
C200.1193 (7)0.0313 (11)0.6079 (6)0.096 (3)
H20A0.15900.08410.63060.144*
H20B0.15270.08960.56050.144*
H20C0.04290.00050.58100.144*
C210.0670 (7)0.0619 (15)0.7521 (6)0.088 (2)
C220.3508 (5)0.2610 (10)0.6074 (3)0.0609 (16)
H22A0.39270.35300.57970.091*
H22B0.28650.22180.56110.091*
H22C0.39660.15090.62840.091*
C230.6475 (4)0.2278 (10)0.9707 (3)0.0520 (15)
C240.7590 (5)0.4422 (11)0.9121 (4)0.0631 (17)
C250.8560 (5)0.1800 (12)1.0236 (5)0.070 (2)
H25A0.85280.18271.09010.084*
H25B0.92220.24981.01660.084*
C260.8656 (7)0.0272 (14)0.9932 (5)0.090 (3)
H26A0.92920.08601.03490.109*
H26B0.79950.09661.00070.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.037 (2)0.070 (3)0.049 (2)0.010 (2)0.0038 (17)0.004 (3)
C10.046 (3)0.034 (3)0.028 (2)0.002 (2)0.0057 (18)0.004 (2)
O10.124 (5)0.110 (6)0.137 (6)0.016 (5)0.033 (4)0.014 (5)
C20.041 (2)0.044 (3)0.039 (2)0.002 (2)0.002 (2)0.011 (2)
O20.1160.1140.1140.0340.0710.018
O30.046 (2)0.133 (5)0.067 (3)0.014 (3)0.0006 (18)0.062 (3)
C30.050 (3)0.044 (3)0.060 (3)0.004 (3)0.002 (2)0.006 (3)
C40.051 (3)0.028 (3)0.053 (3)0.005 (2)0.003 (2)0.001 (2)
O40.063 (3)0.124 (5)0.133 (5)0.031 (3)0.000 (3)0.052 (4)
C50.060 (3)0.058 (4)0.080 (4)0.005 (3)0.000 (3)0.004 (3)
O50.1050.1050.1050.0000.0220.000
C60.058 (4)0.058 (4)0.100 (5)0.014 (3)0.023 (4)0.006 (4)
C70.078 (4)0.047 (4)0.076 (4)0.018 (4)0.031 (4)0.007 (4)
C80.084 (4)0.033 (3)0.059 (3)0.018 (3)0.009 (3)0.001 (3)
C90.060 (3)0.031 (3)0.038 (3)0.010 (3)0.002 (2)0.003 (2)
C100.056 (3)0.029 (2)0.029 (2)0.007 (2)0.007 (2)0.003 (2)
C110.072 (4)0.035 (3)0.060 (3)0.002 (3)0.001 (3)0.010 (3)
C120.066 (4)0.047 (3)0.061 (4)0.018 (3)0.011 (3)0.011 (3)
C130.067 (4)0.042 (3)0.070 (4)0.002 (3)0.002 (3)0.010 (3)
C140.044 (3)0.053 (3)0.027 (2)0.002 (2)0.0063 (19)0.009 (2)
C150.053 (3)0.029 (2)0.033 (2)0.001 (2)0.015 (2)0.003 (2)
C160.058 (3)0.067 (4)0.040 (3)0.007 (3)0.017 (2)0.007 (3)
C170.088 (5)0.108 (7)0.067 (4)0.010 (5)0.051 (4)0.005 (5)
C180.0980.0980.0980.0000.0210.000
C190.095 (6)0.130 (8)0.096 (6)0.024 (6)0.044 (5)0.034 (6)
C200.081 (5)0.049 (4)0.136 (7)0.003 (4)0.029 (5)0.017 (5)
C210.071 (4)0.090 (6)0.098 (5)0.009 (4)0.011 (4)0.005 (4)
C220.087 (4)0.058 (4)0.030 (2)0.014 (4)0.006 (2)0.007 (3)
C230.038 (3)0.079 (5)0.038 (3)0.001 (3)0.005 (2)0.000 (3)
C240.055 (3)0.069 (4)0.063 (4)0.018 (3)0.007 (3)0.003 (3)
C250.038 (3)0.100 (6)0.064 (4)0.005 (3)0.004 (3)0.012 (4)
C260.089 (5)0.107 (7)0.078 (5)0.039 (5)0.022 (4)0.030 (5)
Geometric parameters (Å, º) top
N—C231.395 (6)C10—C111.548 (7)
N—C241.407 (8)C10—H10A0.9800
N—C251.472 (7)C11—C121.536 (8)
C1—C151.506 (6)C11—H11A0.9700
C1—C21.535 (7)C11—H11B0.9700
C1—C101.563 (7)C12—C161.489 (9)
C1—C141.571 (6)C12—C131.551 (8)
O1—C211.251 (12)C12—H12A0.9800
C2—C31.535 (7)C13—C241.459 (9)
C2—H2A0.9700C13—C141.526 (8)
C2—H2B0.9700C13—H13A0.9800
O2—C211.222 (10)C14—C231.498 (8)
O2—H2C0.8500C14—H14A0.9800
O3—C231.192 (8)C15—C161.322 (8)
C3—C41.535 (7)C15—H15A0.9300
C3—H3A0.9700C16—C171.534 (8)
C3—H3B0.9700C17—C181.512 (11)
C4—C91.554 (8)C17—C191.586 (14)
C4—C51.567 (8)C17—H17A0.9800
C4—H4A0.9800C18—H18A0.9600
O4—C241.236 (7)C18—H18B0.9600
C5—C211.470 (11)C18—H18C0.9600
C5—C201.497 (10)C19—H19A0.9600
C5—C61.539 (9)C19—H19B0.9600
O5—C261.337 (9)C19—H19C0.9600
O5—H5A0.8500C20—H20A0.9600
C6—C71.491 (10)C20—H20B0.9600
C6—H6A0.9700C20—H20C0.9600
C6—H6B0.9700C22—H22A0.9600
C7—C81.503 (8)C22—H22B0.9600
C7—H7A0.9700C22—H22C0.9600
C7—H7B0.9700C25—C261.518 (13)
C8—C91.550 (7)C25—H25A0.9700
C8—H8A0.9700C25—H25B0.9700
C8—H8B0.9700C26—H26A0.9700
C9—C221.541 (7)C26—H26B0.9700
C9—C101.556 (7)
C23—N—C24110.5 (5)C11—C12—C13105.8 (5)
C23—N—C25124.2 (5)C16—C12—H12A110.9
C24—N—C25125.1 (5)C11—C12—H12A110.9
C15—C1—C2113.9 (4)C13—C12—H12A110.9
C15—C1—C10109.8 (3)C24—C13—C14105.3 (5)
C2—C1—C10111.4 (4)C24—C13—C12113.6 (5)
C15—C1—C14105.6 (4)C14—C13—C12107.9 (5)
C2—C1—C14111.0 (4)C24—C13—H13A110.0
C10—C1—C14104.6 (4)C14—C13—H13A110.0
C1—C2—C3113.4 (4)C12—C13—H13A110.0
C1—C2—H2A108.9C23—C14—C13105.1 (4)
C3—C2—H2A108.9C23—C14—C1114.6 (5)
C1—C2—H2B108.9C13—C14—C1111.8 (4)
C3—C2—H2B108.9C23—C14—H14A108.4
H2A—C2—H2B107.7C13—C14—H14A108.4
C21—O2—H2C107.4C1—C14—H14A108.4
C4—C3—C2109.9 (5)C16—C15—C1115.9 (5)
C4—C3—H3A109.7C16—C15—H15A122.1
C2—C3—H3A109.7C1—C15—H15A122.1
C4—C3—H3B109.7C15—C16—C12113.9 (5)
C2—C3—H3B109.7C15—C16—C17126.2 (7)
H3A—C3—H3B108.2C12—C16—C17119.8 (6)
C3—C4—C9110.0 (4)C18—C17—C16113.8 (7)
C3—C4—C5114.1 (5)C18—C17—C19108.9 (7)
C9—C4—C5115.5 (4)C16—C17—C19112.0 (7)
C3—C4—H4A105.4C18—C17—H17A107.3
C9—C4—H4A105.4C16—C17—H17A107.3
C5—C4—H4A105.4C19—C17—H17A107.3
C21—C5—C20102.6 (7)C17—C18—H18A109.5
C21—C5—C6111.0 (6)C17—C18—H18B109.5
C20—C5—C6112.1 (6)H18A—C18—H18B109.5
C21—C5—C4108.2 (5)C17—C18—H18C109.5
C20—C5—C4115.0 (6)H18A—C18—H18C109.5
C6—C5—C4107.7 (5)H18B—C18—H18C109.5
C26—O5—H5A118.4C17—C19—H19A109.5
C7—C6—C5113.8 (6)C17—C19—H19B109.5
C7—C6—H6A108.8H19A—C19—H19B109.5
C5—C6—H6A108.8C17—C19—H19C109.5
C7—C6—H6B108.8H19A—C19—H19C109.5
C5—C6—H6B108.8H19B—C19—H19C109.5
H6A—C6—H6B107.7C5—C20—H20A109.5
C6—C7—C8110.6 (5)C5—C20—H20B109.5
C6—C7—H7A109.5H20A—C20—H20B109.5
C8—C7—H7A109.5C5—C20—H20C109.5
C6—C7—H7B109.5H20A—C20—H20C109.5
C8—C7—H7B109.5H20B—C20—H20C109.5
H7A—C7—H7B108.1O2—C21—O1121.1 (9)
C7—C8—C9114.5 (5)O2—C21—C5115.3 (9)
C7—C8—H8A108.6O1—C21—C5123.6 (9)
C9—C8—H8A108.6C9—C22—H22A109.5
C7—C8—H8B108.6C9—C22—H22B109.5
C9—C8—H8B108.6H22A—C22—H22B109.5
H8A—C8—H8B107.6C9—C22—H22C109.5
C22—C9—C8109.7 (4)H22A—C22—H22C109.5
C22—C9—C4114.9 (5)H22B—C22—H22C109.5
C8—C9—C4107.1 (4)O3—C23—N120.6 (5)
C22—C9—C10109.9 (4)O3—C23—C14130.7 (5)
C8—C9—C10107.8 (4)N—C23—C14108.7 (5)
C4—C9—C10107.1 (4)O4—C24—N122.6 (6)
C11—C10—C9115.8 (4)O4—C24—C13127.2 (7)
C11—C10—C1107.8 (4)N—C24—C13110.2 (5)
C9—C10—C1114.8 (4)N—C25—C26112.7 (6)
C11—C10—H10A105.9N—C25—H25A109.1
C9—C10—H10A105.9C26—C25—H25A109.1
C1—C10—H10A105.9N—C25—H25B109.1
C12—C11—C10111.3 (4)C26—C25—H25B109.1
C12—C11—H11A109.4H25A—C25—H25B107.8
C10—C11—H11A109.4O5—C26—C25113.7 (7)
C12—C11—H11B109.4O5—C26—H26A108.8
C10—C11—H11B109.4C25—C26—H26A108.8
H11A—C11—H11B108.0O5—C26—H26B108.8
C16—C12—C11110.3 (5)C25—C26—H26B108.8
C16—C12—C13108.0 (5)H26A—C26—H26B107.7
C15—C1—C2—C377.6 (5)C12—C13—C14—C23124.2 (5)
C10—C1—C2—C347.3 (6)C24—C13—C14—C1122.3 (5)
C14—C1—C2—C3163.3 (4)C12—C13—C14—C10.7 (6)
C1—C2—C3—C455.8 (6)C15—C1—C14—C2365.5 (5)
C2—C3—C4—C963.4 (6)C2—C1—C14—C2358.4 (5)
C2—C3—C4—C5164.9 (5)C10—C1—C14—C23178.7 (4)
C3—C4—C5—C2158.1 (7)C15—C1—C14—C1354.0 (5)
C9—C4—C5—C21172.9 (6)C2—C1—C14—C13177.9 (5)
C3—C4—C5—C2055.9 (8)C10—C1—C14—C1361.9 (5)
C9—C4—C5—C2073.1 (7)C2—C1—C15—C16177.4 (4)
C3—C4—C5—C6178.3 (6)C10—C1—C15—C1656.9 (6)
C9—C4—C5—C652.8 (7)C14—C1—C15—C1655.3 (5)
C21—C5—C6—C7172.6 (6)C1—C15—C16—C121.6 (7)
C20—C5—C6—C773.3 (8)C1—C15—C16—C17179.9 (5)
C4—C5—C6—C754.2 (8)C11—C12—C16—C1554.7 (6)
C5—C6—C7—C857.6 (8)C13—C12—C16—C1560.5 (7)
C6—C7—C8—C957.4 (8)C11—C12—C16—C17123.8 (6)
C7—C8—C9—C2272.0 (7)C13—C12—C16—C17121.0 (6)
C7—C8—C9—C453.3 (7)C15—C16—C17—C18118.0 (8)
C7—C8—C9—C10168.3 (5)C12—C16—C17—C1860.3 (9)
C3—C4—C9—C2260.7 (6)C15—C16—C17—C196.0 (10)
C5—C4—C9—C2270.2 (6)C12—C16—C17—C19175.7 (7)
C3—C4—C9—C8177.1 (4)C20—C5—C21—O2176.4 (7)
C5—C4—C9—C851.9 (6)C6—C5—C21—O256.5 (9)
C3—C4—C9—C1061.7 (5)C4—C5—C21—O261.5 (9)
C5—C4—C9—C10167.3 (5)C20—C5—C21—O13.9 (10)
C22—C9—C10—C1155.9 (6)C6—C5—C21—O1123.8 (9)
C8—C9—C10—C1163.6 (6)C4—C5—C21—O1118.1 (9)
C4—C9—C10—C11178.6 (4)C24—N—C23—O3174.9 (6)
C22—C9—C10—C170.8 (5)C25—N—C23—O30.2 (9)
C8—C9—C10—C1169.7 (4)C24—N—C23—C144.6 (6)
C4—C9—C10—C154.7 (5)C25—N—C23—C14179.6 (5)
C15—C1—C10—C1151.5 (5)C13—C14—C23—O3175.0 (7)
C2—C1—C10—C11178.7 (4)C1—C14—C23—O361.9 (8)
C14—C1—C10—C1161.4 (5)C13—C14—C23—N4.4 (6)
C15—C1—C10—C979.2 (5)C1—C14—C23—N118.7 (5)
C2—C1—C10—C948.0 (5)C23—N—C24—O4179.3 (7)
C14—C1—C10—C9167.9 (4)C25—N—C24—O44.3 (10)
C9—C10—C11—C12131.2 (5)C23—N—C24—C132.9 (7)
C1—C10—C11—C121.1 (6)C25—N—C24—C13177.9 (6)
C10—C11—C12—C1653.9 (6)C14—C13—C24—O4177.7 (7)
C10—C11—C12—C1362.6 (6)C12—C13—C24—O459.9 (10)
C16—C12—C13—C2460.7 (7)C14—C13—C24—N0.0 (7)
C11—C12—C13—C24178.9 (5)C12—C13—C24—N117.9 (6)
C16—C12—C13—C1455.6 (6)C23—N—C25—C2666.0 (8)
C11—C12—C13—C1462.5 (6)C24—N—C25—C26119.6 (7)
C24—C13—C14—C232.6 (6)N—C25—C26—O562.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2c···O5i0.852.163.010 (9)178
O5—H5a···O4ii0.852.343.076 (10)145
C10—H10A···O3iii0.982.553.470 (6)157
C14—H14A···O3iii0.982.383.316 (7)159
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC26H37NO5
Mr443.57
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.274 (3), 6.9550 (14), 14.445 (3)
β (°) 102.22 (3)
V3)1205.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2487, 2373, 1744
Rint0.024
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.189, 1.00
No. of reflections2373
No. of parameters271
No. of restraints22
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2c···O5i0.852.163.010 (9)178
O5—H5a···O4ii0.852.343.076 (10)145
C10—H10A···O3iii0.982.553.470 (6)157
C14—H14A···O3iii0.982.383.316 (7)159
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+1/2, z+2.
 

Acknowledgements

This work was supported by the 948 program of the State Forestry Administration (grant No. 2006–4-C03).

References

First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPenczek, P. (1970). Rocz. Chem. 44, 1815–1818.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalter, H. S. & Ray, A. L. (1967). J. Chem. Eng. Data, 12, 267–268.  Google Scholar
First citationXiao, J. G. (2003). J. Hunan City Univ. (Natur. Sci.), 24, 92–93.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds