metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-pyridylmethyl­ene­amino)benzene­sulfonato]-κ3N,N′,O;κ2N,N′-copper(II)

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
*Correspondence e-mail: 33538098@qq.com

(Received 16 August 2009; accepted 3 September 2009; online 12 September 2009)

In the mononuclear title compound, [Cu(C12H9N2O3S)2], the copper(II) salt of 2-(2-pyridylmethyl­eneamino)benzene­sulfonic acid, the CuII atom is coordinated by one O and two N atoms from a monoanion as well as by two N atoms from another monoanion in a distorted trigonal-bipyramidal environment.

Related literature

For the synthesis of the ligand, see: Casella & Gullotti (1986[Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293-1303.]). For the structures of analogues, see: Cai et al. (2008[Cai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195.]). For related Schiff base complexes, see: Li et al. (2006[Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984-m2986.], 2007[Li, H.-Y., Liao, B.-L., Jiang, Y.-M., Zhang, S.-H. & Li, J.-X. (2007). Chin. J. Struct. Chem. 26, 907-910.]); Wang et al. (1994[Wang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 1453-1460.]); Jiang et al. (2006[Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767-770.]); Zhang et al. (2004[Zhang, S.-H., Jiang, Y.-M., Liu, Z. & Zhou, Z.-Y. (2004). Chin. J. Struct. Chem. 23, 882-885.]). For a discussion on self-assembly, see: Zheng et al. (2001[Zheng, S.-L., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 586-592.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H9N2O3S)2]

  • Mr = 586.08

  • Orthorhombic, P b c a

  • a = 17.347 (4) Å

  • b = 14.686 (4) Å

  • c = 18.830 (5) Å

  • V = 4797 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 294 K

  • 0.25 × 0.19 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.762, Tmax = 0.868

  • 33042 measured reflections

  • 4455 independent reflections

  • 2420 reflections with I > 2σ(I)

  • Rint = 0.128

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 1.01

  • 4455 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nowadays, Great interesting have focused on the design and control of the network superamolecular coordination complexes. Via utilizing both coordination bonds and hydrogen bonds in the self-assembly chemistry (Zheng et al., 2001). However, Schiff base complexes which contain both sulfur and amino acid functionalities have received much attention owing to their potential application in medicine (Casella & Gullotti, 1986; Wang et al., 1994; Li et al., 2006).

Our group have focused on the exploration of the coordination chemistry of the sulfonate ligand for many years. (Zhang et al., 2004; Jiang et al., 2006; Li et al.,2007). In this work, we report the synthesis and the stucture of the mononuclear CuII complex(Fig. 1). The unit of structure is composed of one CuII, two deprotonated Paba- ligands. The five-coordinated CuII atom has a distorted distorted trigonal biyramid geometry, being coordinated by pyridine N, imine N and sulfonate O atoms from one of the deprotonated Paba-ligands in a tridentate facial arrangement. And the other pyridine N and imine N from another deprotonated Paba- ligands in a bidentate facial arrangement. It is notable that the sulfonate O atom doesn't participate in coordinating, Which is different from those reported complexes with N,N',O-tridentate donor ligands (Cai et al., 2008).

The point deserves mention that there exits many atypical hydrogen bonds. In which the C—H donor and the S—O acceptor group of the Paba ligands participate in the hydrogen bonding and form a three-dimensional superamolecular structure(Fig.2).

Related literature top

For the synthesis of the ligand, see: Casella & Gullotti (1986). For the structures of analogues, see: Cai et al. (2008). For related Schiff base complexes, see: Li et al. (2006, 2007); Wang et al. (1994); Jiang et al. (2006); Zhang et al. (2004). For a discussion on self-assembly, see: Zheng et al. (2001).

Experimental top

The potassium salt of 2-(2-pyridylmethylimine)benzenesulfonic acid (PabaK) was synthesized according to the literature methods (Casella et al., 1986).

For the preparation of the title complex, the ligand pabaK (1 mmol, 0.30 g) was dissolved in methanol (10 ml) at 333 K and an aqueous solution (10 ml) containing 0.90 g Cu(AcO)2.H2O (0.5 mmol,0.90 g) was added to the above solution. The resulting solution was stirred at 333 K for 4 h, then cooled to room temperature and filtrated. A blue-block crystal suitable for X-ray diffraction were obtained by slow evaporation after several days in a yield of 55%. Analysis found for (%.): C: 49.14, H: 3.07,N: 9.56,S: 10.92; C24H18CuN4O6S2 requires (%.): C: 49.09, H: 3.09, N: 9.53, S: 10.95.

Refinement top

H atoms bonded to C were positioned geometrically with C—H distance 0.93 Å, and treated as riding atoms,with Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, An ellipsoid plot (30% probability) showing the numbering scheme.
[Figure 2] Fig. 2. Packing of the title complex, showing the form a there-dimensional superamolecular structure, linked via atypical hydrogen bonds(dashed lines).
Bis[2-(2-pyridylmethyleneamino)benzenesulfonato]- κ3N,N',O;κ2N,N'-copper(II) top
Crystal data top
[Cu(C12H9N2O3S)2]Dx = 1.623 Mg m3
Mr = 586.08Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1929 reflections
a = 17.347 (4) Åθ = 2.4–18.1°
b = 14.686 (4) ŵ = 1.14 mm1
c = 18.830 (5) ÅT = 294 K
V = 4797 (2) Å3Block, blue
Z = 80.25 × 0.19 × 0.13 mm
F(000) = 2392
Data collection top
Bruker SMART CCD area-detector
diffractometer
4455 independent reflections
Radiation source: fine-focus sealed tube2420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.128
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2021
Tmin = 0.762, Tmax = 0.868k = 1717
33042 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0346P)2 + 8.08P]
where P = (Fo2 + 2Fc2)/3
4455 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cu(C12H9N2O3S)2]V = 4797 (2) Å3
Mr = 586.08Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.347 (4) ŵ = 1.14 mm1
b = 14.686 (4) ÅT = 294 K
c = 18.830 (5) Å0.25 × 0.19 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4455 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2420 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.868Rint = 0.128
33042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.01Δρmax = 0.42 e Å3
4455 reflectionsΔρmin = 0.64 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.06065 (4)0.76356 (4)0.39106 (4)0.0524 (2)
S10.26315 (8)0.67187 (12)0.44099 (8)0.0587 (4)
S20.01410 (8)0.84439 (10)0.23757 (8)0.0508 (4)
O10.2221 (3)0.7519 (4)0.4561 (2)0.1110 (19)
O20.2297 (2)0.5889 (3)0.4688 (2)0.0936 (16)
O30.3437 (2)0.6766 (3)0.4590 (2)0.0734 (12)
O40.00046 (19)0.7751 (3)0.2916 (2)0.0664 (11)
O50.0112 (2)0.9335 (3)0.2599 (2)0.0657 (11)
O60.0135 (2)0.8176 (3)0.16862 (19)0.0657 (11)
N10.0138 (2)0.6688 (3)0.4184 (2)0.0470 (11)
N20.1189 (2)0.6475 (3)0.3528 (2)0.0389 (10)
N30.0584 (2)0.8399 (3)0.4808 (2)0.0417 (10)
N40.1258 (2)0.8652 (3)0.3585 (2)0.0426 (10)
C10.0816 (3)0.6815 (4)0.4503 (3)0.0638 (17)
H10.09660.74060.46140.077*
C20.1304 (3)0.6107 (5)0.4675 (3)0.0655 (17)
H20.17700.62180.49050.079*
C30.1092 (3)0.5243 (5)0.4501 (3)0.0678 (18)
H30.14100.47540.46140.081*
C40.0397 (3)0.5095 (4)0.4155 (3)0.0543 (15)
H40.02430.45100.40300.065*
C50.0056 (3)0.5828 (3)0.4000 (3)0.0428 (13)
C60.0795 (3)0.5753 (4)0.3622 (3)0.0465 (13)
H60.09690.51930.34550.056*
C70.1900 (3)0.6409 (3)0.3139 (3)0.0392 (12)
C80.2598 (3)0.6566 (3)0.3484 (3)0.0429 (13)
C90.3270 (3)0.6531 (4)0.3078 (3)0.0574 (16)
H90.37410.66400.32960.069*
C100.3253 (4)0.6338 (4)0.2365 (4)0.077 (2)
H100.37080.63120.21060.092*
C110.2559 (4)0.6184 (5)0.2040 (4)0.0780 (19)
H110.25430.60560.15570.094*
C120.1886 (3)0.6219 (4)0.2425 (3)0.0608 (16)
H120.14180.61120.21990.073*
C130.0264 (3)0.8255 (4)0.5440 (3)0.0465 (13)
H130.00120.77190.55080.056*
C140.0320 (3)0.8859 (4)0.6002 (3)0.0538 (15)
H140.00860.87270.64340.065*
C150.0722 (3)0.9648 (4)0.5915 (3)0.0595 (16)
H150.07531.00730.62800.071*
C160.1081 (3)0.9804 (4)0.5275 (3)0.0584 (15)
H160.13701.03290.52060.070*
C170.1007 (3)0.9174 (3)0.4737 (3)0.0445 (13)
C180.1366 (3)0.9272 (3)0.4042 (3)0.0467 (13)
H180.16670.97780.39370.056*
C190.1617 (3)0.8674 (3)0.2902 (3)0.0420 (13)
C200.2410 (3)0.8767 (4)0.2847 (3)0.0550 (15)
H200.27070.88650.32510.066*
C210.2755 (3)0.8713 (4)0.2187 (3)0.0656 (17)
H210.32860.87840.21470.079*
C220.2316 (3)0.8556 (4)0.1586 (3)0.0640 (17)
H220.25500.85160.11430.077*
C230.1524 (3)0.8457 (4)0.1651 (3)0.0544 (15)
H230.12290.83480.12480.065*
C240.1167 (3)0.8516 (3)0.2304 (3)0.0412 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0531 (4)0.0415 (4)0.0625 (5)0.0138 (3)0.0194 (4)0.0088 (3)
S10.0445 (9)0.0764 (11)0.0553 (10)0.0017 (8)0.0076 (7)0.0064 (8)
S20.0407 (8)0.0617 (10)0.0498 (9)0.0054 (7)0.0020 (7)0.0020 (8)
O10.120 (4)0.153 (5)0.060 (3)0.080 (4)0.033 (3)0.043 (3)
O20.077 (3)0.132 (4)0.071 (3)0.044 (3)0.009 (2)0.036 (3)
O30.053 (2)0.078 (3)0.089 (3)0.008 (2)0.029 (2)0.003 (2)
O40.045 (2)0.086 (3)0.068 (3)0.014 (2)0.0058 (19)0.028 (2)
O50.054 (2)0.069 (3)0.074 (3)0.021 (2)0.004 (2)0.009 (2)
O60.057 (2)0.085 (3)0.055 (3)0.001 (2)0.008 (2)0.007 (2)
N10.039 (3)0.047 (3)0.055 (3)0.008 (2)0.009 (2)0.004 (2)
N20.030 (2)0.041 (3)0.046 (3)0.002 (2)0.0006 (19)0.008 (2)
N30.040 (2)0.036 (2)0.050 (3)0.001 (2)0.003 (2)0.004 (2)
N40.042 (3)0.042 (3)0.044 (3)0.001 (2)0.001 (2)0.001 (2)
C10.048 (4)0.066 (4)0.077 (4)0.010 (3)0.024 (3)0.017 (3)
C20.049 (4)0.089 (5)0.059 (4)0.019 (3)0.017 (3)0.014 (4)
C30.063 (4)0.074 (5)0.067 (4)0.034 (4)0.007 (3)0.002 (4)
C40.056 (4)0.045 (3)0.062 (4)0.013 (3)0.000 (3)0.004 (3)
C50.041 (3)0.039 (3)0.048 (3)0.005 (2)0.004 (3)0.001 (3)
C60.041 (3)0.039 (3)0.059 (4)0.002 (3)0.002 (3)0.012 (3)
C70.032 (3)0.038 (3)0.048 (3)0.003 (2)0.003 (2)0.003 (2)
C80.036 (3)0.037 (3)0.056 (3)0.001 (2)0.002 (3)0.009 (3)
C90.030 (3)0.061 (4)0.081 (5)0.004 (3)0.004 (3)0.010 (3)
C100.061 (5)0.090 (5)0.079 (5)0.012 (4)0.028 (4)0.003 (4)
C110.069 (5)0.100 (5)0.064 (4)0.007 (4)0.015 (4)0.015 (4)
C120.049 (4)0.073 (4)0.061 (4)0.003 (3)0.002 (3)0.018 (3)
C130.043 (3)0.048 (3)0.049 (4)0.003 (3)0.003 (3)0.008 (3)
C140.048 (3)0.072 (4)0.042 (4)0.003 (3)0.000 (3)0.003 (3)
C150.069 (4)0.066 (4)0.044 (4)0.005 (3)0.009 (3)0.010 (3)
C160.073 (4)0.050 (4)0.052 (4)0.008 (3)0.009 (3)0.007 (3)
C170.045 (3)0.045 (3)0.043 (3)0.000 (3)0.003 (3)0.004 (3)
C180.052 (3)0.039 (3)0.049 (4)0.014 (3)0.002 (3)0.004 (3)
C190.046 (3)0.034 (3)0.047 (3)0.001 (2)0.004 (3)0.005 (2)
C200.047 (4)0.062 (4)0.056 (4)0.015 (3)0.002 (3)0.015 (3)
C210.047 (4)0.078 (5)0.071 (5)0.005 (3)0.012 (3)0.025 (4)
C220.057 (4)0.082 (5)0.054 (4)0.014 (3)0.014 (3)0.015 (3)
C230.056 (4)0.061 (4)0.046 (4)0.009 (3)0.004 (3)0.005 (3)
C240.042 (3)0.040 (3)0.041 (3)0.003 (2)0.003 (3)0.006 (2)
Geometric parameters (Å, º) top
Cu1—N11.967 (4)C7—C121.374 (7)
Cu1—N41.970 (4)C7—C81.394 (6)
Cu1—N32.028 (4)C8—C91.394 (7)
Cu1—N22.108 (4)C9—C101.372 (8)
Cu1—O42.158 (4)C9—H90.9300
S1—O11.403 (4)C10—C111.368 (8)
S1—O31.439 (4)C10—H100.9300
S1—O21.447 (4)C11—C121.374 (8)
S1—C81.758 (5)C11—H110.9300
S2—O61.439 (4)C12—H120.9300
S2—O51.443 (4)C13—C141.384 (7)
S2—O41.462 (4)C13—H130.9300
S2—C241.788 (5)C14—C151.364 (7)
N1—C11.334 (6)C14—H140.9300
N1—C51.352 (6)C15—C161.375 (7)
N2—C61.275 (6)C15—H150.9300
N2—C71.438 (6)C16—C171.379 (7)
N3—C131.329 (6)C16—H160.9300
N3—C171.361 (6)C17—C181.456 (7)
N4—C181.267 (6)C18—H180.9300
N4—C191.430 (6)C19—C201.387 (7)
C1—C21.379 (7)C19—C241.388 (7)
C1—H10.9300C20—C211.380 (7)
C2—C31.362 (8)C20—H200.9300
C2—H20.9300C21—C221.383 (8)
C3—C41.388 (7)C21—H210.9300
C3—H30.9300C22—C231.387 (7)
C4—C51.364 (7)C22—H220.9300
C4—H40.9300C23—C241.379 (7)
C5—C61.470 (7)C23—H230.9300
C6—H60.9300
N1—Cu1—N4173.80 (17)C12—C7—N2119.8 (5)
N1—Cu1—N399.20 (17)C8—C7—N2119.7 (4)
N4—Cu1—N381.47 (17)C9—C8—C7117.6 (5)
N1—Cu1—N280.34 (16)C9—C8—S1121.4 (4)
N4—Cu1—N2103.36 (16)C7—C8—S1120.8 (4)
N3—Cu1—N2137.83 (15)C10—C9—C8121.8 (6)
N1—Cu1—O487.73 (15)C10—C9—H9119.1
N4—Cu1—O487.30 (16)C8—C9—H9119.1
N3—Cu1—O4132.05 (16)C11—C10—C9119.3 (6)
N2—Cu1—O490.12 (15)C11—C10—H10120.3
O1—S1—O3113.8 (3)C9—C10—H10120.3
O1—S1—O2115.3 (3)C10—C11—C12120.4 (6)
O3—S1—O2110.1 (3)C10—C11—H11119.8
O1—S1—C8107.0 (2)C12—C11—H11119.8
O3—S1—C8105.8 (3)C7—C12—C11120.5 (6)
O2—S1—C8103.8 (3)C7—C12—H12119.7
O6—S2—O5114.2 (2)C11—C12—H12119.7
O6—S2—O4112.4 (2)N3—C13—C14123.6 (5)
O5—S2—O4112.1 (2)N3—C13—H13118.2
O6—S2—C24106.2 (2)C14—C13—H13118.2
O5—S2—C24105.7 (2)C15—C14—C13119.3 (5)
O4—S2—C24105.4 (2)C15—C14—H14120.4
S2—O4—Cu1125.0 (2)C13—C14—H14120.4
C1—N1—C5117.7 (5)C14—C15—C16118.5 (5)
C1—N1—Cu1126.7 (4)C14—C15—H15120.7
C5—N1—Cu1115.5 (3)C16—C15—H15120.7
C6—N2—C7118.3 (4)C15—C16—C17119.4 (5)
C6—N2—Cu1111.6 (3)C15—C16—H16120.3
C7—N2—Cu1129.8 (3)C17—C16—H16120.3
C13—N3—C17116.5 (4)N3—C17—C16122.6 (5)
C13—N3—Cu1131.7 (3)N3—C17—C18113.7 (5)
C17—N3—Cu1111.7 (3)C16—C17—C18123.6 (5)
C18—N4—C19122.1 (4)N4—C18—C17118.4 (5)
C18—N4—Cu1114.7 (3)N4—C18—H18120.8
C19—N4—Cu1123.1 (3)C17—C18—H18120.8
N1—C1—C2122.9 (6)C20—C19—C24120.9 (5)
N1—C1—H1118.6C20—C19—N4120.0 (5)
C2—C1—H1118.6C24—C19—N4118.8 (4)
C3—C2—C1118.6 (6)C21—C20—C19119.4 (5)
C3—C2—H2120.7C21—C20—H20120.3
C1—C2—H2120.7C19—C20—H20120.3
C2—C3—C4119.6 (5)C20—C21—C22120.5 (5)
C2—C3—H3120.2C20—C21—H21119.8
C4—C3—H3120.2C22—C21—H21119.8
C5—C4—C3118.5 (5)C21—C22—C23119.4 (5)
C5—C4—H4120.7C21—C22—H22120.3
C3—C4—H4120.7C23—C22—H22120.3
N1—C5—C4122.6 (5)C24—C23—C22121.1 (5)
N1—C5—C6114.3 (4)C24—C23—H23119.4
C4—C5—C6123.1 (5)C22—C23—H23119.4
N2—C6—C5118.1 (5)C23—C24—C19118.7 (5)
N2—C6—H6120.9C23—C24—S2120.7 (4)
C5—C6—H6120.9C19—C24—S2120.5 (4)
C12—C7—C8120.4 (5)
O6—S2—O4—Cu1158.9 (3)C6—N2—C7—C8113.4 (5)
O5—S2—O4—Cu170.9 (3)Cu1—N2—C7—C873.1 (6)
C24—S2—O4—Cu143.6 (3)C12—C7—C8—C90.6 (7)
N1—Cu1—O4—S2172.6 (3)N2—C7—C8—C9177.5 (4)
N4—Cu1—O4—S23.7 (3)C12—C7—C8—S1174.8 (4)
N3—Cu1—O4—S272.2 (3)N2—C7—C8—S17.2 (6)
N2—Cu1—O4—S2107.1 (3)O1—S1—C8—C9120.6 (5)
N4—Cu1—N1—C151.2 (18)O3—S1—C8—C91.1 (5)
N3—Cu1—N1—C144.4 (5)O2—S1—C8—C9117.1 (4)
N2—Cu1—N1—C1178.3 (5)O1—S1—C8—C764.3 (5)
O4—Cu1—N1—C187.8 (5)O3—S1—C8—C7174.1 (4)
N4—Cu1—N1—C5126.0 (16)O2—S1—C8—C758.1 (5)
N3—Cu1—N1—C5138.4 (4)C7—C8—C9—C100.8 (8)
N2—Cu1—N1—C51.1 (4)S1—C8—C9—C10174.6 (5)
O4—Cu1—N1—C589.4 (4)C8—C9—C10—C110.6 (10)
N1—Cu1—N2—C62.5 (3)C9—C10—C11—C120.3 (10)
N4—Cu1—N2—C6172.4 (3)C8—C7—C12—C110.3 (8)
N3—Cu1—N2—C695.6 (4)N2—C7—C12—C11177.8 (5)
O4—Cu1—N2—C685.1 (4)C10—C11—C12—C70.1 (10)
N1—Cu1—N2—C7176.4 (4)C17—N3—C13—C142.4 (7)
N4—Cu1—N2—C71.5 (4)Cu1—N3—C13—C14179.0 (4)
N3—Cu1—N2—C790.5 (4)N3—C13—C14—C150.0 (8)
O4—Cu1—N2—C788.8 (4)C13—C14—C15—C162.1 (8)
N1—Cu1—N3—C139.2 (5)C14—C15—C16—C171.7 (8)
N4—Cu1—N3—C13177.1 (5)C13—N3—C17—C162.7 (7)
N2—Cu1—N3—C1376.6 (5)Cu1—N3—C17—C16179.9 (4)
O4—Cu1—N3—C13104.4 (4)C13—N3—C17—C18177.6 (4)
N1—Cu1—N3—C17174.1 (3)Cu1—N3—C17—C180.4 (5)
N4—Cu1—N3—C170.4 (3)C15—C16—C17—N30.7 (8)
N2—Cu1—N3—C17100.2 (4)C15—C16—C17—C18179.7 (5)
O4—Cu1—N3—C1778.8 (4)C19—N4—C18—C17177.2 (4)
N1—Cu1—N4—C1896.9 (17)Cu1—N4—C18—C170.2 (6)
N3—Cu1—N4—C180.3 (4)N3—C17—C18—N40.1 (7)
N2—Cu1—N4—C18137.0 (4)C16—C17—C18—N4179.8 (5)
O4—Cu1—N4—C18133.5 (4)C18—N4—C19—C2053.8 (7)
N1—Cu1—N4—C1986.1 (17)Cu1—N4—C19—C20122.9 (4)
N3—Cu1—N4—C19177.3 (4)C18—N4—C19—C24132.0 (5)
N2—Cu1—N4—C1940.0 (4)Cu1—N4—C19—C2451.2 (6)
O4—Cu1—N4—C1949.5 (4)C24—C19—C20—C210.8 (8)
C5—N1—C1—C22.7 (8)N4—C19—C20—C21174.8 (5)
Cu1—N1—C1—C2179.9 (4)C19—C20—C21—C220.9 (9)
N1—C1—C2—C31.2 (9)C20—C21—C22—C230.4 (9)
C1—C2—C3—C40.4 (9)C21—C22—C23—C240.2 (9)
C2—C3—C4—C50.3 (9)C22—C23—C24—C190.3 (8)
C1—N1—C5—C42.8 (8)C22—C23—C24—S2176.9 (4)
Cu1—N1—C5—C4179.7 (4)C20—C19—C24—C230.2 (8)
C1—N1—C5—C6177.2 (5)N4—C19—C24—C23174.3 (4)
Cu1—N1—C5—C60.3 (6)C20—C19—C24—S2177.4 (4)
C3—C4—C5—N11.4 (8)N4—C19—C24—S28.5 (6)
C3—C4—C5—C6178.6 (5)O6—S2—C24—C239.3 (5)
C7—N2—C6—C5178.1 (4)O5—S2—C24—C23112.4 (4)
Cu1—N2—C6—C53.5 (6)O4—S2—C24—C23128.7 (4)
N1—C5—C6—N22.6 (7)O6—S2—C24—C19173.6 (4)
C4—C5—C6—N2177.3 (5)O5—S2—C24—C1964.7 (5)
C6—N2—C7—C1268.5 (6)O4—S2—C24—C1954.1 (5)
Cu1—N2—C7—C12105.0 (5)

Experimental details

Crystal data
Chemical formula[Cu(C12H9N2O3S)2]
Mr586.08
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)17.347 (4), 14.686 (4), 18.830 (5)
V3)4797 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.25 × 0.19 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.762, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
33042, 4455, 2420
Rint0.128
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 1.01
No. of reflections4455
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.64

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was funded by the Guangxi Science Foundation of the Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 0731053).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCasella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303.  CrossRef CAS Web of Science Google Scholar
First citationJiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770.  CAS Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-Y., Liao, B.-L., Jiang, Y.-M., Zhang, S.-H. & Li, J.-X. (2007). Chin. J. Struct. Chem. 26, 907–910.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 1453–1460.  Google Scholar
First citationZhang, S.-H., Jiang, Y.-M., Liu, Z. & Zhou, Z.-Y. (2004). Chin. J. Struct. Chem. 23, 882–885.  CAS Google Scholar
First citationZheng, S.-L., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 586–592.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds