metal-organic compounds
Bis[2-(2-pyridylmethyleneamino)benzenesulfonato]-κ3N,N′,O;κ2N,N′-copper(II)
aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
*Correspondence e-mail: 33538098@qq.com
In the mononuclear title compound, [Cu(C12H9N2O3S)2], the copper(II) salt of 2-(2-pyridylmethyleneamino)benzenesulfonic acid, the CuII atom is coordinated by one O and two N atoms from a monoanion as well as by two N atoms from another monoanion in a distorted trigonal-bipyramidal environment.
Related literature
For the synthesis of the ligand, see: Casella & Gullotti (1986). For the structures of analogues, see: Cai et al. (2008). For related Schiff base complexes, see: Li et al. (2006, 2007); Wang et al. (1994); Jiang et al. (2006); Zhang et al. (2004). For a discussion on self-assembly, see: Zheng et al. (2001).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809035661/ng2628sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809035661/ng2628Isup2.hkl
The potassium salt of 2-(2-pyridylmethylimine)benzenesulfonic acid (PabaK) was synthesized according to the literature methods (Casella et al., 1986).
For the preparation of the title complex, the ligand pabaK (1 mmol, 0.30 g) was dissolved in methanol (10 ml) at 333 K and an aqueous solution (10 ml) containing 0.90 g Cu(AcO)2.H2O (0.5 mmol,0.90 g) was added to the above solution. The resulting solution was stirred at 333 K for 4 h, then cooled to room temperature and filtrated. A blue-block crystal suitable for X-ray diffraction were obtained by slow evaporation after several days in a yield of 55%. Analysis found for (%.): C: 49.14, H: 3.07,N: 9.56,S: 10.92; C24H18CuN4O6S2 requires (%.): C: 49.09, H: 3.09, N: 9.53, S: 10.95.
H atoms bonded to C were positioned geometrically with C—H distance 0.93 Å, and treated as riding atoms,with Uiso(H)= 1.2Ueq(C).
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C12H9N2O3S)2] | Dx = 1.623 Mg m−3 |
Mr = 586.08 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 1929 reflections |
a = 17.347 (4) Å | θ = 2.4–18.1° |
b = 14.686 (4) Å | µ = 1.14 mm−1 |
c = 18.830 (5) Å | T = 294 K |
V = 4797 (2) Å3 | Block, blue |
Z = 8 | 0.25 × 0.19 × 0.13 mm |
F(000) = 2392 |
Bruker SMART CCD area-detector diffractometer | 4455 independent reflections |
Radiation source: fine-focus sealed tube | 2420 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.128 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −20→21 |
Tmin = 0.762, Tmax = 0.868 | k = −17→17 |
33042 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0346P)2 + 8.08P] where P = (Fo2 + 2Fc2)/3 |
4455 reflections | (Δ/σ)max < 0.001 |
334 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
[Cu(C12H9N2O3S)2] | V = 4797 (2) Å3 |
Mr = 586.08 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 17.347 (4) Å | µ = 1.14 mm−1 |
b = 14.686 (4) Å | T = 294 K |
c = 18.830 (5) Å | 0.25 × 0.19 × 0.13 mm |
Bruker SMART CCD area-detector diffractometer | 4455 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2420 reflections with I > 2σ(I) |
Tmin = 0.762, Tmax = 0.868 | Rint = 0.128 |
33042 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.42 e Å−3 |
4455 reflections | Δρmin = −0.64 e Å−3 |
334 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.06065 (4) | 0.76356 (4) | 0.39106 (4) | 0.0524 (2) | |
S1 | 0.26315 (8) | 0.67187 (12) | 0.44099 (8) | 0.0587 (4) | |
S2 | 0.01410 (8) | 0.84439 (10) | 0.23757 (8) | 0.0508 (4) | |
O1 | 0.2221 (3) | 0.7519 (4) | 0.4561 (2) | 0.1110 (19) | |
O2 | 0.2297 (2) | 0.5889 (3) | 0.4688 (2) | 0.0936 (16) | |
O3 | 0.3437 (2) | 0.6766 (3) | 0.4590 (2) | 0.0734 (12) | |
O4 | −0.00046 (19) | 0.7751 (3) | 0.2916 (2) | 0.0664 (11) | |
O5 | −0.0112 (2) | 0.9335 (3) | 0.2599 (2) | 0.0657 (11) | |
O6 | −0.0135 (2) | 0.8176 (3) | 0.16862 (19) | 0.0657 (11) | |
N1 | −0.0138 (2) | 0.6688 (3) | 0.4184 (2) | 0.0470 (11) | |
N2 | 0.1189 (2) | 0.6475 (3) | 0.3528 (2) | 0.0389 (10) | |
N3 | 0.0584 (2) | 0.8399 (3) | 0.4808 (2) | 0.0417 (10) | |
N4 | 0.1258 (2) | 0.8652 (3) | 0.3585 (2) | 0.0426 (10) | |
C1 | −0.0816 (3) | 0.6815 (4) | 0.4503 (3) | 0.0638 (17) | |
H1 | −0.0966 | 0.7406 | 0.4614 | 0.077* | |
C2 | −0.1304 (3) | 0.6107 (5) | 0.4675 (3) | 0.0655 (17) | |
H2 | −0.1770 | 0.6218 | 0.4905 | 0.079* | |
C3 | −0.1092 (3) | 0.5243 (5) | 0.4501 (3) | 0.0678 (18) | |
H3 | −0.1410 | 0.4754 | 0.4614 | 0.081* | |
C4 | −0.0397 (3) | 0.5095 (4) | 0.4155 (3) | 0.0543 (15) | |
H4 | −0.0243 | 0.4510 | 0.4030 | 0.065* | |
C5 | 0.0056 (3) | 0.5828 (3) | 0.4000 (3) | 0.0428 (13) | |
C6 | 0.0795 (3) | 0.5753 (4) | 0.3622 (3) | 0.0465 (13) | |
H6 | 0.0969 | 0.5193 | 0.3455 | 0.056* | |
C7 | 0.1900 (3) | 0.6409 (3) | 0.3139 (3) | 0.0392 (12) | |
C8 | 0.2598 (3) | 0.6566 (3) | 0.3484 (3) | 0.0429 (13) | |
C9 | 0.3270 (3) | 0.6531 (4) | 0.3078 (3) | 0.0574 (16) | |
H9 | 0.3741 | 0.6640 | 0.3296 | 0.069* | |
C10 | 0.3253 (4) | 0.6338 (4) | 0.2365 (4) | 0.077 (2) | |
H10 | 0.3708 | 0.6312 | 0.2106 | 0.092* | |
C11 | 0.2559 (4) | 0.6184 (5) | 0.2040 (4) | 0.0780 (19) | |
H11 | 0.2543 | 0.6056 | 0.1557 | 0.094* | |
C12 | 0.1886 (3) | 0.6219 (4) | 0.2425 (3) | 0.0608 (16) | |
H12 | 0.1418 | 0.6112 | 0.2199 | 0.073* | |
C13 | 0.0264 (3) | 0.8255 (4) | 0.5440 (3) | 0.0465 (13) | |
H13 | −0.0012 | 0.7719 | 0.5508 | 0.056* | |
C14 | 0.0320 (3) | 0.8859 (4) | 0.6002 (3) | 0.0538 (15) | |
H14 | 0.0086 | 0.8727 | 0.6434 | 0.065* | |
C15 | 0.0722 (3) | 0.9648 (4) | 0.5915 (3) | 0.0595 (16) | |
H15 | 0.0753 | 1.0073 | 0.6280 | 0.071* | |
C16 | 0.1081 (3) | 0.9804 (4) | 0.5275 (3) | 0.0584 (15) | |
H16 | 0.1370 | 1.0329 | 0.5206 | 0.070* | |
C17 | 0.1007 (3) | 0.9174 (3) | 0.4737 (3) | 0.0445 (13) | |
C18 | 0.1366 (3) | 0.9272 (3) | 0.4042 (3) | 0.0467 (13) | |
H18 | 0.1667 | 0.9778 | 0.3937 | 0.056* | |
C19 | 0.1617 (3) | 0.8674 (3) | 0.2902 (3) | 0.0420 (13) | |
C20 | 0.2410 (3) | 0.8767 (4) | 0.2847 (3) | 0.0550 (15) | |
H20 | 0.2707 | 0.8865 | 0.3251 | 0.066* | |
C21 | 0.2755 (3) | 0.8713 (4) | 0.2187 (3) | 0.0656 (17) | |
H21 | 0.3286 | 0.8784 | 0.2147 | 0.079* | |
C22 | 0.2316 (3) | 0.8556 (4) | 0.1586 (3) | 0.0640 (17) | |
H22 | 0.2550 | 0.8516 | 0.1143 | 0.077* | |
C23 | 0.1524 (3) | 0.8457 (4) | 0.1651 (3) | 0.0544 (15) | |
H23 | 0.1229 | 0.8348 | 0.1248 | 0.065* | |
C24 | 0.1167 (3) | 0.8516 (3) | 0.2304 (3) | 0.0412 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0531 (4) | 0.0415 (4) | 0.0625 (5) | −0.0138 (3) | 0.0194 (4) | −0.0088 (3) |
S1 | 0.0445 (9) | 0.0764 (11) | 0.0553 (10) | 0.0017 (8) | −0.0076 (7) | 0.0064 (8) |
S2 | 0.0407 (8) | 0.0617 (10) | 0.0498 (9) | 0.0054 (7) | −0.0020 (7) | 0.0020 (8) |
O1 | 0.120 (4) | 0.153 (5) | 0.060 (3) | 0.080 (4) | −0.033 (3) | −0.043 (3) |
O2 | 0.077 (3) | 0.132 (4) | 0.071 (3) | −0.044 (3) | −0.009 (2) | 0.036 (3) |
O3 | 0.053 (2) | 0.078 (3) | 0.089 (3) | −0.008 (2) | −0.029 (2) | 0.003 (2) |
O4 | 0.045 (2) | 0.086 (3) | 0.068 (3) | −0.014 (2) | −0.0058 (19) | 0.028 (2) |
O5 | 0.054 (2) | 0.069 (3) | 0.074 (3) | 0.021 (2) | 0.004 (2) | −0.009 (2) |
O6 | 0.057 (2) | 0.085 (3) | 0.055 (3) | 0.001 (2) | −0.008 (2) | −0.007 (2) |
N1 | 0.039 (3) | 0.047 (3) | 0.055 (3) | −0.008 (2) | 0.009 (2) | −0.004 (2) |
N2 | 0.030 (2) | 0.041 (3) | 0.046 (3) | −0.002 (2) | −0.0006 (19) | −0.008 (2) |
N3 | 0.040 (2) | 0.036 (2) | 0.050 (3) | −0.001 (2) | 0.003 (2) | 0.004 (2) |
N4 | 0.042 (3) | 0.042 (3) | 0.044 (3) | −0.001 (2) | 0.001 (2) | 0.001 (2) |
C1 | 0.048 (4) | 0.066 (4) | 0.077 (4) | −0.010 (3) | 0.024 (3) | −0.017 (3) |
C2 | 0.049 (4) | 0.089 (5) | 0.059 (4) | −0.019 (3) | 0.017 (3) | −0.014 (4) |
C3 | 0.063 (4) | 0.074 (5) | 0.067 (4) | −0.034 (4) | 0.007 (3) | −0.002 (4) |
C4 | 0.056 (4) | 0.045 (3) | 0.062 (4) | −0.013 (3) | 0.000 (3) | −0.004 (3) |
C5 | 0.041 (3) | 0.039 (3) | 0.048 (3) | −0.005 (2) | −0.004 (3) | −0.001 (3) |
C6 | 0.041 (3) | 0.039 (3) | 0.059 (4) | −0.002 (3) | −0.002 (3) | −0.012 (3) |
C7 | 0.032 (3) | 0.038 (3) | 0.048 (3) | 0.003 (2) | 0.003 (2) | −0.003 (2) |
C8 | 0.036 (3) | 0.037 (3) | 0.056 (3) | 0.001 (2) | −0.002 (3) | 0.009 (3) |
C9 | 0.030 (3) | 0.061 (4) | 0.081 (5) | −0.004 (3) | 0.004 (3) | 0.010 (3) |
C10 | 0.061 (5) | 0.090 (5) | 0.079 (5) | 0.012 (4) | 0.028 (4) | 0.003 (4) |
C11 | 0.069 (5) | 0.100 (5) | 0.064 (4) | 0.007 (4) | 0.015 (4) | −0.015 (4) |
C12 | 0.049 (4) | 0.073 (4) | 0.061 (4) | 0.003 (3) | −0.002 (3) | −0.018 (3) |
C13 | 0.043 (3) | 0.048 (3) | 0.049 (4) | −0.003 (3) | 0.003 (3) | 0.008 (3) |
C14 | 0.048 (3) | 0.072 (4) | 0.042 (4) | −0.003 (3) | 0.000 (3) | 0.003 (3) |
C15 | 0.069 (4) | 0.066 (4) | 0.044 (4) | −0.005 (3) | −0.009 (3) | −0.010 (3) |
C16 | 0.073 (4) | 0.050 (4) | 0.052 (4) | −0.008 (3) | −0.009 (3) | −0.007 (3) |
C17 | 0.045 (3) | 0.045 (3) | 0.043 (3) | 0.000 (3) | −0.003 (3) | 0.004 (3) |
C18 | 0.052 (3) | 0.039 (3) | 0.049 (4) | −0.014 (3) | −0.002 (3) | 0.004 (3) |
C19 | 0.046 (3) | 0.034 (3) | 0.047 (3) | −0.001 (2) | 0.004 (3) | 0.005 (2) |
C20 | 0.047 (4) | 0.062 (4) | 0.056 (4) | −0.015 (3) | −0.002 (3) | 0.015 (3) |
C21 | 0.047 (4) | 0.078 (5) | 0.071 (5) | −0.005 (3) | 0.012 (3) | 0.025 (4) |
C22 | 0.057 (4) | 0.082 (5) | 0.054 (4) | 0.014 (3) | 0.014 (3) | 0.015 (3) |
C23 | 0.056 (4) | 0.061 (4) | 0.046 (4) | 0.009 (3) | −0.004 (3) | 0.005 (3) |
C24 | 0.042 (3) | 0.040 (3) | 0.041 (3) | 0.003 (2) | 0.003 (3) | 0.006 (2) |
Cu1—N1 | 1.967 (4) | C7—C12 | 1.374 (7) |
Cu1—N4 | 1.970 (4) | C7—C8 | 1.394 (6) |
Cu1—N3 | 2.028 (4) | C8—C9 | 1.394 (7) |
Cu1—N2 | 2.108 (4) | C9—C10 | 1.372 (8) |
Cu1—O4 | 2.158 (4) | C9—H9 | 0.9300 |
S1—O1 | 1.403 (4) | C10—C11 | 1.368 (8) |
S1—O3 | 1.439 (4) | C10—H10 | 0.9300 |
S1—O2 | 1.447 (4) | C11—C12 | 1.374 (8) |
S1—C8 | 1.758 (5) | C11—H11 | 0.9300 |
S2—O6 | 1.439 (4) | C12—H12 | 0.9300 |
S2—O5 | 1.443 (4) | C13—C14 | 1.384 (7) |
S2—O4 | 1.462 (4) | C13—H13 | 0.9300 |
S2—C24 | 1.788 (5) | C14—C15 | 1.364 (7) |
N1—C1 | 1.334 (6) | C14—H14 | 0.9300 |
N1—C5 | 1.352 (6) | C15—C16 | 1.375 (7) |
N2—C6 | 1.275 (6) | C15—H15 | 0.9300 |
N2—C7 | 1.438 (6) | C16—C17 | 1.379 (7) |
N3—C13 | 1.329 (6) | C16—H16 | 0.9300 |
N3—C17 | 1.361 (6) | C17—C18 | 1.456 (7) |
N4—C18 | 1.267 (6) | C18—H18 | 0.9300 |
N4—C19 | 1.430 (6) | C19—C20 | 1.387 (7) |
C1—C2 | 1.379 (7) | C19—C24 | 1.388 (7) |
C1—H1 | 0.9300 | C20—C21 | 1.380 (7) |
C2—C3 | 1.362 (8) | C20—H20 | 0.9300 |
C2—H2 | 0.9300 | C21—C22 | 1.383 (8) |
C3—C4 | 1.388 (7) | C21—H21 | 0.9300 |
C3—H3 | 0.9300 | C22—C23 | 1.387 (7) |
C4—C5 | 1.364 (7) | C22—H22 | 0.9300 |
C4—H4 | 0.9300 | C23—C24 | 1.379 (7) |
C5—C6 | 1.470 (7) | C23—H23 | 0.9300 |
C6—H6 | 0.9300 | ||
N1—Cu1—N4 | 173.80 (17) | C12—C7—N2 | 119.8 (5) |
N1—Cu1—N3 | 99.20 (17) | C8—C7—N2 | 119.7 (4) |
N4—Cu1—N3 | 81.47 (17) | C9—C8—C7 | 117.6 (5) |
N1—Cu1—N2 | 80.34 (16) | C9—C8—S1 | 121.4 (4) |
N4—Cu1—N2 | 103.36 (16) | C7—C8—S1 | 120.8 (4) |
N3—Cu1—N2 | 137.83 (15) | C10—C9—C8 | 121.8 (6) |
N1—Cu1—O4 | 87.73 (15) | C10—C9—H9 | 119.1 |
N4—Cu1—O4 | 87.30 (16) | C8—C9—H9 | 119.1 |
N3—Cu1—O4 | 132.05 (16) | C11—C10—C9 | 119.3 (6) |
N2—Cu1—O4 | 90.12 (15) | C11—C10—H10 | 120.3 |
O1—S1—O3 | 113.8 (3) | C9—C10—H10 | 120.3 |
O1—S1—O2 | 115.3 (3) | C10—C11—C12 | 120.4 (6) |
O3—S1—O2 | 110.1 (3) | C10—C11—H11 | 119.8 |
O1—S1—C8 | 107.0 (2) | C12—C11—H11 | 119.8 |
O3—S1—C8 | 105.8 (3) | C7—C12—C11 | 120.5 (6) |
O2—S1—C8 | 103.8 (3) | C7—C12—H12 | 119.7 |
O6—S2—O5 | 114.2 (2) | C11—C12—H12 | 119.7 |
O6—S2—O4 | 112.4 (2) | N3—C13—C14 | 123.6 (5) |
O5—S2—O4 | 112.1 (2) | N3—C13—H13 | 118.2 |
O6—S2—C24 | 106.2 (2) | C14—C13—H13 | 118.2 |
O5—S2—C24 | 105.7 (2) | C15—C14—C13 | 119.3 (5) |
O4—S2—C24 | 105.4 (2) | C15—C14—H14 | 120.4 |
S2—O4—Cu1 | 125.0 (2) | C13—C14—H14 | 120.4 |
C1—N1—C5 | 117.7 (5) | C14—C15—C16 | 118.5 (5) |
C1—N1—Cu1 | 126.7 (4) | C14—C15—H15 | 120.7 |
C5—N1—Cu1 | 115.5 (3) | C16—C15—H15 | 120.7 |
C6—N2—C7 | 118.3 (4) | C15—C16—C17 | 119.4 (5) |
C6—N2—Cu1 | 111.6 (3) | C15—C16—H16 | 120.3 |
C7—N2—Cu1 | 129.8 (3) | C17—C16—H16 | 120.3 |
C13—N3—C17 | 116.5 (4) | N3—C17—C16 | 122.6 (5) |
C13—N3—Cu1 | 131.7 (3) | N3—C17—C18 | 113.7 (5) |
C17—N3—Cu1 | 111.7 (3) | C16—C17—C18 | 123.6 (5) |
C18—N4—C19 | 122.1 (4) | N4—C18—C17 | 118.4 (5) |
C18—N4—Cu1 | 114.7 (3) | N4—C18—H18 | 120.8 |
C19—N4—Cu1 | 123.1 (3) | C17—C18—H18 | 120.8 |
N1—C1—C2 | 122.9 (6) | C20—C19—C24 | 120.9 (5) |
N1—C1—H1 | 118.6 | C20—C19—N4 | 120.0 (5) |
C2—C1—H1 | 118.6 | C24—C19—N4 | 118.8 (4) |
C3—C2—C1 | 118.6 (6) | C21—C20—C19 | 119.4 (5) |
C3—C2—H2 | 120.7 | C21—C20—H20 | 120.3 |
C1—C2—H2 | 120.7 | C19—C20—H20 | 120.3 |
C2—C3—C4 | 119.6 (5) | C20—C21—C22 | 120.5 (5) |
C2—C3—H3 | 120.2 | C20—C21—H21 | 119.8 |
C4—C3—H3 | 120.2 | C22—C21—H21 | 119.8 |
C5—C4—C3 | 118.5 (5) | C21—C22—C23 | 119.4 (5) |
C5—C4—H4 | 120.7 | C21—C22—H22 | 120.3 |
C3—C4—H4 | 120.7 | C23—C22—H22 | 120.3 |
N1—C5—C4 | 122.6 (5) | C24—C23—C22 | 121.1 (5) |
N1—C5—C6 | 114.3 (4) | C24—C23—H23 | 119.4 |
C4—C5—C6 | 123.1 (5) | C22—C23—H23 | 119.4 |
N2—C6—C5 | 118.1 (5) | C23—C24—C19 | 118.7 (5) |
N2—C6—H6 | 120.9 | C23—C24—S2 | 120.7 (4) |
C5—C6—H6 | 120.9 | C19—C24—S2 | 120.5 (4) |
C12—C7—C8 | 120.4 (5) | ||
O6—S2—O4—Cu1 | 158.9 (3) | C6—N2—C7—C8 | −113.4 (5) |
O5—S2—O4—Cu1 | −70.9 (3) | Cu1—N2—C7—C8 | 73.1 (6) |
C24—S2—O4—Cu1 | 43.6 (3) | C12—C7—C8—C9 | 0.6 (7) |
N1—Cu1—O4—S2 | 172.6 (3) | N2—C7—C8—C9 | −177.5 (4) |
N4—Cu1—O4—S2 | −3.7 (3) | C12—C7—C8—S1 | −174.8 (4) |
N3—Cu1—O4—S2 | 72.2 (3) | N2—C7—C8—S1 | 7.2 (6) |
N2—Cu1—O4—S2 | −107.1 (3) | O1—S1—C8—C9 | 120.6 (5) |
N4—Cu1—N1—C1 | −51.2 (18) | O3—S1—C8—C9 | −1.1 (5) |
N3—Cu1—N1—C1 | 44.4 (5) | O2—S1—C8—C9 | −117.1 (4) |
N2—Cu1—N1—C1 | −178.3 (5) | O1—S1—C8—C7 | −64.3 (5) |
O4—Cu1—N1—C1 | −87.8 (5) | O3—S1—C8—C7 | 174.1 (4) |
N4—Cu1—N1—C5 | 126.0 (16) | O2—S1—C8—C7 | 58.1 (5) |
N3—Cu1—N1—C5 | −138.4 (4) | C7—C8—C9—C10 | −0.8 (8) |
N2—Cu1—N1—C5 | −1.1 (4) | S1—C8—C9—C10 | 174.6 (5) |
O4—Cu1—N1—C5 | 89.4 (4) | C8—C9—C10—C11 | 0.6 (10) |
N1—Cu1—N2—C6 | 2.5 (3) | C9—C10—C11—C12 | −0.3 (10) |
N4—Cu1—N2—C6 | −172.4 (3) | C8—C7—C12—C11 | −0.3 (8) |
N3—Cu1—N2—C6 | 95.6 (4) | N2—C7—C12—C11 | 177.8 (5) |
O4—Cu1—N2—C6 | −85.1 (4) | C10—C11—C12—C7 | 0.1 (10) |
N1—Cu1—N2—C7 | 176.4 (4) | C17—N3—C13—C14 | 2.4 (7) |
N4—Cu1—N2—C7 | 1.5 (4) | Cu1—N3—C13—C14 | 179.0 (4) |
N3—Cu1—N2—C7 | −90.5 (4) | N3—C13—C14—C15 | 0.0 (8) |
O4—Cu1—N2—C7 | 88.8 (4) | C13—C14—C15—C16 | −2.1 (8) |
N1—Cu1—N3—C13 | 9.2 (5) | C14—C15—C16—C17 | 1.7 (8) |
N4—Cu1—N3—C13 | −177.1 (5) | C13—N3—C17—C16 | −2.7 (7) |
N2—Cu1—N3—C13 | −76.6 (5) | Cu1—N3—C17—C16 | −179.9 (4) |
O4—Cu1—N3—C13 | 104.4 (4) | C13—N3—C17—C18 | 177.6 (4) |
N1—Cu1—N3—C17 | −174.1 (3) | Cu1—N3—C17—C18 | 0.4 (5) |
N4—Cu1—N3—C17 | −0.4 (3) | C15—C16—C17—N3 | 0.7 (8) |
N2—Cu1—N3—C17 | 100.2 (4) | C15—C16—C17—C18 | −179.7 (5) |
O4—Cu1—N3—C17 | −78.8 (4) | C19—N4—C18—C17 | −177.2 (4) |
N1—Cu1—N4—C18 | 96.9 (17) | Cu1—N4—C18—C17 | −0.2 (6) |
N3—Cu1—N4—C18 | 0.3 (4) | N3—C17—C18—N4 | −0.1 (7) |
N2—Cu1—N4—C18 | −137.0 (4) | C16—C17—C18—N4 | −179.8 (5) |
O4—Cu1—N4—C18 | 133.5 (4) | C18—N4—C19—C20 | 53.8 (7) |
N1—Cu1—N4—C19 | −86.1 (17) | Cu1—N4—C19—C20 | −122.9 (4) |
N3—Cu1—N4—C19 | 177.3 (4) | C18—N4—C19—C24 | −132.0 (5) |
N2—Cu1—N4—C19 | 40.0 (4) | Cu1—N4—C19—C24 | 51.2 (6) |
O4—Cu1—N4—C19 | −49.5 (4) | C24—C19—C20—C21 | 0.8 (8) |
C5—N1—C1—C2 | 2.7 (8) | N4—C19—C20—C21 | 174.8 (5) |
Cu1—N1—C1—C2 | 179.9 (4) | C19—C20—C21—C22 | −0.9 (9) |
N1—C1—C2—C3 | −1.2 (9) | C20—C21—C22—C23 | 0.4 (9) |
C1—C2—C3—C4 | −0.4 (9) | C21—C22—C23—C24 | 0.2 (9) |
C2—C3—C4—C5 | 0.3 (9) | C22—C23—C24—C19 | −0.3 (8) |
C1—N1—C5—C4 | −2.8 (8) | C22—C23—C24—S2 | 176.9 (4) |
Cu1—N1—C5—C4 | 179.7 (4) | C20—C19—C24—C23 | −0.2 (8) |
C1—N1—C5—C6 | 177.2 (5) | N4—C19—C24—C23 | −174.3 (4) |
Cu1—N1—C5—C6 | −0.3 (6) | C20—C19—C24—S2 | −177.4 (4) |
C3—C4—C5—N1 | 1.4 (8) | N4—C19—C24—S2 | 8.5 (6) |
C3—C4—C5—C6 | −178.6 (5) | O6—S2—C24—C23 | 9.3 (5) |
C7—N2—C6—C5 | −178.1 (4) | O5—S2—C24—C23 | −112.4 (4) |
Cu1—N2—C6—C5 | −3.5 (6) | O4—S2—C24—C23 | 128.7 (4) |
N1—C5—C6—N2 | 2.6 (7) | O6—S2—C24—C19 | −173.6 (4) |
C4—C5—C6—N2 | −177.3 (5) | O5—S2—C24—C19 | 64.7 (5) |
C6—N2—C7—C12 | 68.5 (6) | O4—S2—C24—C19 | −54.1 (5) |
Cu1—N2—C7—C12 | −105.0 (5) |
Experimental details
Crystal data | |
Chemical formula | [Cu(C12H9N2O3S)2] |
Mr | 586.08 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 294 |
a, b, c (Å) | 17.347 (4), 14.686 (4), 18.830 (5) |
V (Å3) | 4797 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.25 × 0.19 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.762, 0.868 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33042, 4455, 2420 |
Rint | 0.128 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.131, 1.01 |
No. of reflections | 4455 |
No. of parameters | 334 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.64 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was funded by the Guangxi Science Foundation of the Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 0731053).
References
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195. Web of Science CSD CrossRef IUCr Journals Google Scholar
Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303. CrossRef CAS Web of Science Google Scholar
Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770. CAS Google Scholar
Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, H.-Y., Liao, B.-L., Jiang, Y.-M., Zhang, S.-H. & Li, J.-X. (2007). Chin. J. Struct. Chem. 26, 907–910. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 1453–1460. Google Scholar
Zhang, S.-H., Jiang, Y.-M., Liu, Z. & Zhou, Z.-Y. (2004). Chin. J. Struct. Chem. 23, 882–885. CAS Google Scholar
Zheng, S.-L., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 586–592. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nowadays, Great interesting have focused on the design and control of the network superamolecular coordination complexes. Via utilizing both coordination bonds and hydrogen bonds in the self-assembly chemistry (Zheng et al., 2001). However, Schiff base complexes which contain both sulfur and amino acid functionalities have received much attention owing to their potential application in medicine (Casella & Gullotti, 1986; Wang et al., 1994; Li et al., 2006).
Our group have focused on the exploration of the coordination chemistry of the sulfonate ligand for many years. (Zhang et al., 2004; Jiang et al., 2006; Li et al.,2007). In this work, we report the synthesis and the stucture of the mononuclear CuII complex(Fig. 1). The unit of structure is composed of one CuII, two deprotonated Paba- ligands. The five-coordinated CuII atom has a distorted distorted trigonal biyramid geometry, being coordinated by pyridine N, imine N and sulfonate O atoms from one of the deprotonated Paba-ligands in a tridentate facial arrangement. And the other pyridine N and imine N from another deprotonated Paba- ligands in a bidentate facial arrangement. It is notable that the sulfonate O atom doesn't participate in coordinating, Which is different from those reported complexes with N,N',O-tridentate donor ligands (Cai et al., 2008).
The point deserves mention that there exits many atypical hydrogen bonds. In which the C—H donor and the S—O acceptor group of the Paba ligands participate in the hydrogen bonding and form a three-dimensional superamolecular structure(Fig.2).