organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Meth­­oxy-6a,11a-di­methyl-6a,11a-di­hydro-6H-1-benzofuro[3,2-c]chromen-3-ol from Dalbergia oliveri

aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Payathai, Bangkok 10330, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasart University, Pathumthani 12121, Thailand
*Correspondence e-mail: warintho@yahoo.com

(Received 23 August 2009; accepted 28 August 2009; online 9 September 2009)

The title compound, commonly known as (+)-(6aS,11aS)-medicarpin, C16H14O4, was isolated from Dalbergia oliveri and displays a rigid mol­ecule consisting of four fused rings. The benzofuran system is inclined at an angle of 76.49 (2)° with respect to the chroman unit. The compound exists as a polymeric chain arising from inter­molecular O—H⋯O bonding.

Related literature

For general background to (+)-(6aS,11aS)-medicarpin, see: Deesamer et al. (2007[Deesamer, S., Kokpola, U., Chavasiria, W., Douillardb, S., Peyrotb, V., Vidalc, N. & Combesc, S. (2007). Tetrahedron, 63, 12986-12993.]); Hargreaves et al. (1976[Hargreaves, J. A., Mansfield, J. W. & Coxon, D. T. (1976). Nature (London), 262, 318-319.]). For a related structure, see: Aree et al. (2003[Aree, T., Tip-pyang, S., Seesukphronrarak, S. & Chaichit, N. (2003). Acta Cryst. E59, o363-o365.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O4

  • Mr = 270.27

  • Monoclinic, P 21

  • a = 6.6289 (3) Å

  • b = 8.7963 (4) Å

  • c = 11.3150 (5) Å

  • β = 99.4820 (10)°

  • V = 650.76 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: none

  • 4783 measured reflections

  • 1949 independent reflections

  • 2867 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.09

  • 1949 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.82 2.07 2.882 (2) 169
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dalbergia Oliveri Gamble is widely found in Thailand and used in traditional Thai medicine for treament of chronic ulcer. One of major compositions of CH2Cl2 crude products extracted from the heartwoods of Dalbergia Oliveri (Deesamer et al., 2007) was (+)(6aS,11aS)-Medicarpin. It was identified as phytoalexin (Hargreaves et al., 1976).

The rigid molecule of the title compound consists of four fused rings adopts a bent-shaped conformation. The benzofuran ring system is inclined at the angle of 76.49 (2)° with respect to the chroman moiety. The tetrahydropyranyl group adopts an envelope conformation with atom C6 deviates from the plane by 0.4144 Å.

The compound exists as a polymeric chain arising from intermolecular O—H···O bonding.

Related literature top

For general background, see: Deesamer et al. (2007); Hargreaves et al. (1976). For a related structure, see: Aree et al. (2003).

Experimental top

Four kilograms of dried and powder heartwoods of D. oliveri were extracted with hexane. The marc was then extracted with CH2Cl2, EtOAc and MeOH, respectively. The CH2Cl2 crudeextract was subjected to silica gel colume chromatography eluting with 60%EtOAc:Hexane to afford the title compound (3.92 g). The suitable single crystals of the title compound were recrystallized from acetone-water as colourless needle crystals.

m.p. 132.0–133.5°C; m/z: 270[M+]

The specific rotation of D3 as [α]D+ 223.1° (c 0.16 in acetone, at 20°C) indicated the absolute configuration to be (+)(6aS,11aS)-medicarpin.

1H-NMR (CDCl3): δ (p.p.m.) 3.55(1H,m,H-6a), 3.65 (1H, dd, J =10.9 and 10.9 Hz, H-6ax), 4.26 (1H, dd, J = 4.8, 10.9 Hz, H-6eq) and 5.23 (1H, d, J = 6.7 Hz, H-116a),

Refinement top

All non-hydrogen atoms were anisotropically refined. The hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93Å (aromatic), 0.97Å (CH2) and 0.98Å (CH3), and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq (Caromatic), 1.5Ueq (CCH2), 1.5Ueq (CCH3) and 1.2Ueq (CO), respectively. In the structure, Friedel pairs [1949] were merged and the stereochemistry assumed from the specific rotation and the previously reported structure (Deesamer et al. 2007).

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. Packing diagram of a polymeric hydrogen bonding chain along the c axis.
9-Methoxy-6a,11a-dimethyl-6a,11a-dihydro-6H-1-benzofuro[3,2-c]chromen-3-ol from Dalbergia Oliveri top
Crystal data top
C16H14O4Z = 2
Mr = 270.27F(000) = 284
Monoclinic, P21Dx = 1.379 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.6289 (3) ŵ = 0.10 mm1
b = 8.7963 (4) ÅT = 293 K
c = 11.3150 (5) ÅNeedle, colourless
β = 99.482 (1)°0.40 × 0.25 × 0.20 mm
V = 650.76 (5) Å3
Data collection top
Bruker SMART
diffractometer
Rint = 0.013
Radiation source: Moθmax = 30.4°, θmin = 1.8°
ω scansh = 79
4783 measured reflectionsk = 1212
3198 independent reflectionsl = 1513
1949 reflections with I > 2σ(I)
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.0162P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.16 e Å3
1949 reflectionsΔρmin = 0.18 e Å3
182 parameters
Crystal data top
C16H14O4V = 650.76 (5) Å3
Mr = 270.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.6289 (3) ŵ = 0.10 mm1
b = 8.7963 (4) ÅT = 293 K
c = 11.3150 (5) Å0.40 × 0.25 × 0.20 mm
β = 99.482 (1)°
Data collection top
Bruker SMART
diffractometer
1949 reflections with I > 2σ(I)
4783 measured reflectionsRint = 0.013
3198 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.09Δρmax = 0.16 e Å3
1949 reflectionsΔρmin = 0.18 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0057 (2)0.4390 (2)0.69102 (16)0.0414 (4)
H10.12520.3980.67360.05*
C20.0496 (3)0.5393 (3)0.78509 (16)0.0458 (4)
H20.05120.56640.82940.055*
C30.2455 (3)0.6001 (2)0.81356 (14)0.0413 (4)
C40.3960 (3)0.5576 (2)0.74813 (15)0.0399 (4)
H40.52780.59620.76780.048*
C4A0.3482 (2)0.45666 (19)0.65285 (14)0.0351 (3)
C60.4820 (3)0.2767 (2)0.53202 (17)0.0426 (4)
H6A0.49180.19640.59150.051*
H6B0.59280.26320.48670.051*
C6A0.2800 (2)0.26311 (19)0.44829 (15)0.0365 (3)
H6A10.26690.16010.41490.044*
C6B0.2447 (2)0.37674 (19)0.34730 (14)0.0338 (3)
C70.3662 (3)0.4270 (2)0.26630 (15)0.0393 (3)
H70.50070.39370.27230.047*
C80.2854 (3)0.5275 (2)0.17639 (16)0.0424 (4)
H80.3670.56330.1230.051*
C90.0829 (3)0.5752 (2)0.16556 (14)0.0388 (4)
C100.0419 (3)0.5288 (2)0.24674 (15)0.0374 (3)
H100.17640.56210.24090.045*
C10A0.0455 (2)0.43038 (19)0.33679 (13)0.0332 (3)
C11A0.0957 (2)0.29610 (19)0.51234 (15)0.0363 (3)
H11A0.03820.20020.53580.044*
C11B0.1513 (2)0.39649 (18)0.62068 (14)0.0343 (3)
C120.1997 (3)0.7026 (3)0.04448 (19)0.0579 (5)
H12A0.22660.77140.02210.087*
H12B0.24470.74740.1130.087*
H12C0.27190.60910.02440.087*
O10.50439 (17)0.42138 (16)0.59175 (11)0.0436 (3)
O20.05777 (17)0.37602 (17)0.42345 (10)0.0401 (3)
O30.0152 (2)0.67276 (19)0.07158 (11)0.0518 (4)
O40.2992 (2)0.7012 (2)0.90549 (12)0.0550 (4)
H4A0.21020.70280.94790.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (7)0.0524 (10)0.0410 (8)0.0031 (7)0.0021 (6)0.0049 (8)
C20.0390 (8)0.0594 (11)0.0391 (8)0.0030 (8)0.0070 (7)0.0028 (8)
C30.0482 (9)0.0424 (9)0.0321 (7)0.0012 (7)0.0026 (6)0.0048 (7)
C40.0368 (7)0.0448 (9)0.0372 (7)0.0089 (6)0.0034 (6)0.0037 (7)
C4A0.0323 (7)0.0385 (8)0.0343 (7)0.0031 (6)0.0045 (6)0.0059 (6)
C60.0361 (7)0.0445 (10)0.0460 (9)0.0054 (7)0.0030 (7)0.0002 (7)
C6A0.0372 (8)0.0295 (7)0.0414 (8)0.0010 (6)0.0022 (6)0.0007 (6)
C6B0.0347 (7)0.0306 (7)0.0354 (7)0.0000 (6)0.0039 (6)0.0039 (6)
C70.0361 (7)0.0411 (8)0.0420 (8)0.0012 (6)0.0102 (6)0.0054 (7)
C80.0455 (9)0.0459 (9)0.0379 (8)0.0007 (7)0.0130 (7)0.0007 (7)
C90.0474 (9)0.0392 (9)0.0296 (7)0.0014 (7)0.0055 (6)0.0027 (6)
C100.0359 (7)0.0423 (8)0.0331 (7)0.0048 (6)0.0035 (6)0.0023 (6)
C10A0.0336 (7)0.0359 (7)0.0301 (6)0.0033 (6)0.0049 (5)0.0032 (6)
C11A0.0351 (7)0.0338 (8)0.0384 (8)0.0057 (6)0.0010 (6)0.0056 (6)
C11B0.0310 (6)0.0360 (8)0.0342 (7)0.0033 (6)0.0004 (5)0.0071 (6)
C120.0621 (12)0.0648 (13)0.0431 (9)0.0143 (11)0.0022 (9)0.0089 (9)
O10.0305 (5)0.0527 (8)0.0482 (6)0.0086 (5)0.0087 (4)0.0075 (6)
O20.0299 (5)0.0536 (7)0.0358 (5)0.0032 (5)0.0020 (4)0.0073 (5)
O30.0604 (8)0.0588 (9)0.0363 (6)0.0084 (7)0.0076 (5)0.0106 (6)
O40.0639 (9)0.0619 (9)0.0394 (7)0.0071 (7)0.0088 (6)0.0089 (6)
Geometric parameters (Å, º) top
C1—C21.376 (3)C6B—C10A1.389 (2)
C1—C11B1.399 (2)C7—C81.387 (3)
C1—H10.93C7—H70.93
C2—C31.393 (3)C8—C91.393 (2)
C2—H20.93C8—H80.93
C3—O41.370 (2)C9—O31.382 (2)
C3—C41.388 (3)C9—C101.395 (2)
C4—C4A1.392 (2)C10—C10A1.389 (2)
C4—H40.93C10—H100.93
C4A—O11.372 (2)C10A—O21.3709 (19)
C4A—C11B1.400 (2)C11A—O21.484 (2)
C6—O11.437 (2)C11A—C11B1.507 (2)
C6—C6A1.512 (2)C11A—H11A0.98
C6—H6A0.97C12—O31.431 (3)
C6—H6B0.97C12—H12A0.96
C6A—C6B1.507 (2)C12—H12B0.96
C6A—C11A1.547 (2)C12—H12C0.96
C6A—H6A10.98O4—H4A0.82
C6B—C71.389 (2)
C2—C1—C11B122.26 (15)C6B—C7—H7120.3
C2—C1—H1118.9C7—C8—C9120.45 (16)
C11B—C1—H1118.9C7—C8—H8119.8
C1—C2—C3119.68 (17)C9—C8—H8119.8
C1—C2—H2120.2O3—C9—C8116.15 (16)
C3—C2—H2120.2O3—C9—C10122.38 (15)
O4—C3—C4117.40 (16)C8—C9—C10121.46 (16)
O4—C3—C2122.73 (17)C10A—C10—C9116.39 (15)
C4—C3—C2119.87 (17)C10A—C10—H10121.8
C3—C4—C4A119.56 (15)C9—C10—H10121.8
C3—C4—H4120.2O2—C10A—C6B113.57 (14)
C4A—C4—H4120.2O2—C10A—C10123.03 (14)
O1—C4A—C4116.13 (14)C6B—C10A—C10123.39 (15)
O1—C4A—C11B122.15 (14)O2—C11A—C11B108.81 (14)
C4—C4A—C11B121.72 (14)O2—C11A—C6A106.09 (13)
O1—C6—C6A112.14 (14)C11B—C11A—C6A112.62 (13)
O1—C6—H6A109.2O2—C11A—H11A109.7
C6A—C6—H6A109.2C11B—C11A—H11A109.7
O1—C6—H6B109.2C6A—C11A—H11A109.7
C6A—C6—H6B109.2C1—C11B—C4A116.87 (15)
H6A—C6—H6B107.9C1—C11B—C11A121.33 (14)
C6B—C6A—C6115.68 (14)C4A—C11B—C11A121.74 (14)
C6B—C6A—C11A101.24 (12)O3—C12—H12A109.5
C6—C6A—C11A112.20 (14)O3—C12—H12B109.5
C6B—C6A—H6A1109.1H12A—C12—H12B109.5
C6—C6A—H6A1109.1O3—C12—H12C109.5
C11A—C6A—H6A1109.1H12A—C12—H12C109.5
C7—C6B—C10A118.82 (15)H12B—C12—H12C109.5
C7—C6B—C6A132.64 (14)C4A—O1—C6114.15 (13)
C10A—C6B—C6A108.46 (13)C10A—O2—C11A106.43 (12)
C8—C7—C6B119.42 (15)C9—O3—C12117.65 (15)
C8—C7—H7120.3C3—O4—H4A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.822.072.882 (2)169
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H14O4
Mr270.27
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.6289 (3), 8.7963 (4), 11.3150 (5)
β (°) 99.482 (1)
V3)650.76 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4783, 3198, 1949
Rint0.013
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.09
No. of reflections1949
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.822.072.882 (2)169.2
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge funding from the Royal Golden Jubilee PhD program (RGJ), the Center for Petroleum, Petrochemicals and Advanced Materials, the A1–B1 project and the Faculty of Science of Chulalongkorn University.

References

First citationAree, T., Tip-pyang, S., Seesukphronrarak, S. & Chaichit, N. (2003). Acta Cryst. E59, o363–o365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeesamer, S., Kokpola, U., Chavasiria, W., Douillardb, S., Peyrotb, V., Vidalc, N. & Combesc, S. (2007). Tetrahedron, 63, 12986–12993.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHargreaves, J. A., Mansfield, J. W. & Coxon, D. T. (1976). Nature (London), 262, 318–319.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds