metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(2,2′-bi­pyridine-5,5′-di­carboxyl­ato-κ2N,N′)nickel(II) dihydrate

aDepartment of Chemistry, Mudanjiang Teachers College, Mudanjiang 157012, People's Republic of China
*Correspondence e-mail: youngflower7799@yahoo.com.cn

(Received 2 September 2009; accepted 5 September 2009; online 12 September 2009)

In the title compound, [Ni(C12H6N2O4)(H2O)4]·2H2O, obtained from a basic solution of 2,2′-bipyridine-5,5′-dicarboxyl­ate and nickel(II) chloride in water, the central Ni(II) cation (site symmetry 2) is coordinated by two N atoms from the 2,2′-bipyridine-5,5′-dicarboxyl­ate ligand and four aqua O atoms. The N—Ni—N angle is 78.64 (8)°. Weak but significant ππ stacking inter­actions exist between the pyridine rings with a centroid–centroid distance of 3.652 (8) Å. In addition, four O atoms of the two carboxyl groups form hydrogen bonds with both coordinated and uncoordinated water mol­ecules, forming an infinite three-dimensional network.

Related literature

For attempts to synthesize 5,5′- and 6,6′-substituted 2,2′-bipyridine derivatives, see: He et al. (2009[He, X., Qu, G.-R., Deng, D. & Ji, B. (2009). Acta Cryst. E65, o985.]); Karaca et al. (2009[Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m335-m336.]); Yousefi et al. (2008[Yousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284-m1285.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H6N2O4)(H2O)4]·2H2O

  • Mr = 408.97

  • Monoclinic, C 2/c

  • a = 12.4787 (2) Å

  • b = 9.8152 (2) Å

  • c = 12.6533 (2) Å

  • β = 92.107 (2)°

  • V = 1548.74 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 120 K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.730, Tmax = 0.828

  • 8276 measured reflections

  • 1691 independent reflections

  • 1379 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 0.98

  • 1691 reflections

  • 138 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H52⋯O3i 0.837 (10) 2.178 (16) 2.9566 (19) 155 (3)
O2—H22⋯O3ii 0.834 (10) 1.921 (12) 2.7410 (18) 168 (3)
O5—H51⋯O4iii 0.834 (10) 1.913 (11) 2.7286 (19) 166 (2)
O2—H21⋯O4iv 0.833 (10) 1.852 (10) 2.6831 (17) 175 (2)
O1—H11⋯O4iv 0.843 (9) 2.650 (17) 3.1740 (18) 121.6 (16)
O1—H11⋯O3iv 0.843 (9) 2.097 (10) 2.9386 (18) 175.9 (19)
O1—H12⋯O5 0.834 (10) 1.861 (11) 2.688 (2) 171 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+2; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2,2'-Bipyridine was used very commonly as ending complexing ligand. Great efforts have been made to synthesize 5,5' and 6,6' position substituted derivatives (He et al., 2009; Karaca et al., 2009; Yousefi et al., 2008). Here we reported the crystal structure of a complexing compound of Ni(II) coordinating to 4,4'dicarboxyl substituted 2,2'-bipyridine derivative.

The central Ni cation coordinated to two N atoms from dianions of one 2,2'-bipyridine-5,5'-dicarboxylate and four O atoms from four waters, forming a distorted octahedral system. Ni(II) cation lies on the twofold axis of the crystal lattice. Two Ni—N bonds were generated by C2 symmetry operation from each other with bond length 2.0706 (14). Four Ni—O bond lengths are nearly equal, two of which 2.0610 (12), and another two 2.0801 (13). Each of two equivalent carboxyl anions has two unequivalent oxygen atoms, C—O bond lengths of which are equalized to be 1.266 (2) and 1.254 (2), respectively. All O atoms of carboxyls formed hydrogen bonds with both complexed waters from another complexing supermolecule and free waters into three dimentional infinite hydrgon bonding network, which stablized the whole crystal structure, along with pi-pi stacking of aromatic pyridine rings.

Related literature top

For attempts to synthesize 5,5'- and 6,6'-substituted 2,2'-bipyridine derivatives, see: He et al. (2009); Karaca et al. (2009); Yousefi et al. (2008).

Experimental top

A solution of 2,2'-bipyridine-5,5'-dicarboxylate (23.2 mg, 0.1 mmol) and NiCl2.6H2O (23.8 mg, 0.1 mmol) was added an aqueous solution of NaOH (0.1 mmol/ml) to adjust pH as 7.0–7.5 at room temperature. A small amount of white precipitate was removed from the resulting solution. Prism colorless crystals were obtained by slow evaporation at room temperature over a period of 10 days.

Refinement top

All H atoms bonded to O atoms of ligand water and free water molecules were located in a difference map, and the distances of the O–H bonds were fixed to 0.82 Å. The other H atoms were placed in calculated positions and refined as riding, with C–H = 0.93 Å, and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of molecules, viewed down the b axis, with the weak interactions shown as dashed lines.
Tetraaqua(2,2'-bipyridine-5,5'-dicarboxylato-κ2N,N') nickel(II) dihydrate top
Crystal data top
[Ni(C12H6N2O4)(H2O)4]·2H2OF(000) = 848.0
Mr = 408.97Dx = 1.754 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8276 reflections
a = 12.4787 (2) Åθ = 3.1–27.0°
b = 9.8152 (2) ŵ = 1.31 mm1
c = 12.6533 (2) ÅT = 120 K
β = 92.107 (2)°Prism, colourless
V = 1548.74 (5) Å30.18 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1691 independent reflections
Radiation source: fine-focus sealed tube1379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1515
Tmin = 0.730, Tmax = 0.828k = 1212
8276 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
1691 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ni(C12H6N2O4)(H2O)4]·2H2OV = 1548.74 (5) Å3
Mr = 408.97Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.4787 (2) ŵ = 1.31 mm1
b = 9.8152 (2) ÅT = 120 K
c = 12.6533 (2) Å0.18 × 0.16 × 0.10 mm
β = 92.107 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1379 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.828Rint = 0.037
8276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0256 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.44 e Å3
1691 reflectionsΔρmin = 0.33 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.27554 (3)0.75000.01072 (11)
O10.03285 (11)0.42083 (13)0.86619 (11)0.0142 (3)
H110.0898 (11)0.4670 (18)0.8664 (17)0.019 (6)*
H120.0189 (14)0.475 (2)0.864 (2)0.044 (8)*
O20.15591 (10)0.29226 (13)0.70290 (10)0.0129 (3)
H210.1953 (16)0.315 (2)0.7545 (13)0.032 (7)*
H220.184 (2)0.2274 (19)0.672 (2)0.052 (9)*
O30.26260 (10)0.06943 (12)1.12935 (10)0.0145 (3)
O40.21890 (10)0.15053 (12)1.12590 (10)0.0166 (3)
O50.12732 (13)0.60197 (15)0.83875 (13)0.0301 (4)
H510.1494 (18)0.6770 (14)0.8598 (18)0.033 (7)*
H520.1726 (19)0.580 (3)0.7913 (18)0.067 (10)*
N10.04499 (11)0.11232 (14)0.84534 (11)0.0106 (3)
C10.21332 (13)0.03194 (17)1.08927 (14)0.0119 (4)
C20.14678 (14)0.01069 (17)0.98899 (14)0.0116 (4)
C30.13045 (14)0.11715 (17)0.94398 (14)0.0119 (4)
H30.15950.19600.97780.014*
C40.07152 (14)0.12874 (17)0.84950 (14)0.0126 (4)
H40.05960.21560.81800.015*
C50.03040 (13)0.01275 (17)0.80161 (14)0.0108 (4)
C70.10106 (14)0.12224 (17)0.93712 (14)0.0117 (4)
H70.11000.20970.96830.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01160 (18)0.00978 (17)0.01056 (18)0.0000.00259 (12)0.000
O10.0113 (7)0.0133 (7)0.0177 (7)0.0017 (5)0.0029 (5)0.0029 (5)
O20.0122 (6)0.0148 (7)0.0115 (7)0.0004 (5)0.0030 (5)0.0024 (5)
O30.0155 (7)0.0126 (6)0.0151 (7)0.0005 (5)0.0059 (5)0.0034 (5)
O40.0203 (7)0.0133 (7)0.0156 (7)0.0013 (5)0.0064 (6)0.0043 (5)
O50.0286 (9)0.0212 (8)0.0392 (10)0.0123 (6)0.0167 (7)0.0135 (7)
N10.0109 (8)0.0106 (8)0.0103 (8)0.0013 (5)0.0011 (6)0.0005 (6)
C10.0101 (9)0.0143 (9)0.0113 (9)0.0019 (7)0.0008 (7)0.0014 (7)
C20.0108 (8)0.0148 (9)0.0092 (9)0.0002 (7)0.0003 (7)0.0005 (7)
C30.0110 (9)0.0118 (9)0.0128 (9)0.0010 (6)0.0007 (7)0.0020 (7)
C40.0132 (9)0.0108 (9)0.0140 (9)0.0006 (7)0.0011 (7)0.0018 (7)
C50.0094 (8)0.0124 (9)0.0106 (9)0.0006 (6)0.0009 (7)0.0007 (7)
C70.0110 (9)0.0124 (9)0.0118 (9)0.0014 (7)0.0013 (7)0.0015 (7)
Geometric parameters (Å, º) top
Ni1—O2i2.0622 (12)O5—H520.837 (10)
Ni1—O22.0622 (12)N1—C71.337 (2)
Ni1—N1i2.0706 (14)N1—C51.356 (2)
Ni1—N12.0706 (14)C1—C21.505 (2)
Ni1—O12.0782 (13)C2—C71.388 (2)
Ni1—O1i2.0782 (13)C2—C31.390 (2)
O1—H110.843 (9)C3—C41.385 (2)
O1—H120.834 (10)C3—H30.9500
O2—H210.833 (10)C4—C51.380 (2)
O2—H220.834 (10)C4—H40.9500
O3—C11.266 (2)C5—C5i1.486 (3)
O4—C11.254 (2)C7—H70.9500
O5—H510.834 (10)
O2i—Ni1—O2170.87 (7)C7—N1—C5118.59 (14)
O2i—Ni1—N1i89.51 (5)C7—N1—Ni1124.87 (11)
O2—Ni1—N1i97.57 (5)C5—N1—Ni1115.66 (12)
O2i—Ni1—N197.57 (5)O4—C1—O3124.20 (16)
O2—Ni1—N189.51 (5)O4—C1—C2117.49 (15)
N1i—Ni1—N178.63 (8)O3—C1—C2118.27 (15)
O2i—Ni1—O184.53 (5)C7—C2—C3117.82 (16)
O2—Ni1—O189.21 (5)C7—C2—C1119.58 (15)
N1i—Ni1—O1170.17 (6)C3—C2—C1122.59 (15)
N1—Ni1—O194.39 (5)C4—C3—C2119.54 (15)
O2i—Ni1—O1i89.21 (5)C4—C3—H3120.2
O2—Ni1—O1i84.53 (5)C2—C3—H3120.2
N1i—Ni1—O1i94.39 (5)C5—C4—C3119.24 (16)
N1—Ni1—O1i170.17 (6)C5—C4—H4120.4
O1—Ni1—O1i93.34 (7)C3—C4—H4120.4
Ni1—O1—H11121.0 (15)N1—C5—C4121.70 (16)
Ni1—O1—H12106.4 (18)N1—C5—C5i114.53 (10)
H11—O1—H12108 (2)C4—C5—C5i123.75 (10)
Ni1—O2—H21109.3 (17)N1—C7—C2123.09 (15)
Ni1—O2—H22119.7 (19)N1—C7—H7118.5
H21—O2—H22109 (2)C2—C7—H7118.5
H51—O5—H52104 (3)
O2i—Ni1—N1—C799.70 (14)C7—C2—C3—C41.0 (3)
O2—Ni1—N1—C774.51 (14)C1—C2—C3—C4177.65 (16)
N1i—Ni1—N1—C7172.33 (18)C2—C3—C4—C50.2 (3)
O1—Ni1—N1—C714.65 (15)C7—N1—C5—C40.2 (3)
O1i—Ni1—N1—C7127.1 (3)Ni1—N1—C5—C4169.99 (14)
O2i—Ni1—N1—C591.22 (12)C7—N1—C5—C5i178.46 (17)
O2—Ni1—N1—C594.57 (12)Ni1—N1—C5—C5i8.7 (2)
N1i—Ni1—N1—C53.25 (9)C3—C4—C5—N10.9 (3)
O1—Ni1—N1—C5176.26 (12)C3—C4—C5—C5i177.6 (2)
O1i—Ni1—N1—C542.0 (4)C5—N1—C7—C21.2 (3)
O4—C1—C2—C74.6 (3)Ni1—N1—C7—C2167.62 (13)
O3—C1—C2—C7173.22 (16)C3—C2—C7—N11.8 (3)
O4—C1—C2—C3176.75 (16)C1—C2—C7—N1176.94 (15)
O3—C1—C2—C35.4 (3)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H52···O3ii0.84 (1)2.18 (2)2.9566 (19)155 (3)
O2—H22···O3iii0.83 (1)1.92 (1)2.7410 (18)168 (3)
O5—H51···O4iv0.83 (1)1.91 (1)2.7286 (19)166 (2)
O2—H21···O4v0.83 (1)1.85 (1)2.6831 (17)175 (2)
O1—H11···O4v0.84 (1)2.65 (2)3.1740 (18)122 (2)
O1—H11···O3v0.84 (1)2.10 (1)2.9386 (18)176 (2)
O1—H12···O50.83 (1)1.86 (1)2.688 (2)171 (3)
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x, y, z1/2; (iv) x, y+1, z+2; (v) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C12H6N2O4)(H2O)4]·2H2O
Mr408.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)12.4787 (2), 9.8152 (2), 12.6533 (2)
β (°) 92.107 (2)
V3)1548.74 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.730, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
8276, 1691, 1379
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 0.98
No. of reflections1691
No. of parameters138
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H52···O3i0.837 (10)2.178 (16)2.9566 (19)155 (3)
O2—H22···O3ii0.834 (10)1.921 (12)2.7410 (18)168 (3)
O5—H51···O4iii0.834 (10)1.913 (11)2.7286 (19)166 (2)
O2—H21···O4iv0.833 (10)1.852 (10)2.6831 (17)175 (2)
O1—H11···O4iv0.843 (9)2.650 (17)3.1740 (18)121.6 (16)
O1—H11···O3iv0.843 (9)2.097 (10)2.9386 (18)175.9 (19)
O1—H12···O50.834 (10)1.861 (11)2.688 (2)171 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z1/2; (iii) x, y+1, z+2; (iv) x+1/2, y+1/2, z+2.
 

Acknowledgements

The author thanks the financial support of Natural Foundation of Heilongjiang Province.

References

First citationBruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, X., Qu, G.-R., Deng, D. & Ji, B. (2009). Acta Cryst. E65, o985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaraca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m335–m336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284–m1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds