organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(2-pyridylmeth­­oxy)benzene

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 3 September 2009; accepted 5 September 2009; online 12 September 2009)

In the title compound, C18H16N2O2, the phenyl­ene ring is located on inversion center. The pyridyl ring makes a dihedral angle of 39.9 (1)° with the phenyl­ene ring. In the crystal, adjacent mol­ecules are linked by inter­molecular C—H⋯N hydrogen bonds, forming a linear chain along the a axis.

Related literature

For the synthesis of silver and palladium complexes with the 1,4-bis­(2-pyridylmeth­oxy)benzene ligand, see: Hartshorn & Steel (1998[Hartshorn, C.-M. & Steel, P.-J. (1998). J. Chem. Soc. Dalton Trans. pp. 3927-3933.]); Oh et al. (2005[Oh, M., Stern, C.-L. & Mirkin, C.-A. (2005). Inorg. Chem. 44, 2647-2653.]). For a related structure, see: Gao et al. (2006[Gao, J.-S., Liu, Y., Hou, G.-F., Yu, Y.-H. & Yan, P.-F. (2006). Acta Cryst. E62, o5645-o5646.]). For the synthesis of title compound, see: Gao et al. (2004[Gao, C.-M., Cao, D. & Zhu, L. (2004). Photogr. Sci. Photochem. 22, 103-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O2

  • Mr = 292.33

  • Monoclinic, P 21 /n

  • a = 9.802 (7) Å

  • b = 3.988 (2) Å

  • c = 18.421 (11) Å

  • β = 93.77 (3)°

  • V = 718.6 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.33 × 0.30 × 0.22 mm

Data collection
  • Rigaku RAXIS-RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.972, Tmax = 0.980

  • 6515 measured reflections

  • 1639 independent reflections

  • 1308 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.118

  • S = 1.11

  • 1639 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1i 0.93 2.68 3.587 (2) 165
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: RAPID-AUTO (Rigaku 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The bipyridyl ligand is generally used as bridge units to construct metal-organic framework. Hartshorn's group have reported the syntheses of the silver and palladium complexes with the 1,4-bis(2-pyridylmethoxy)benzene ligand, which assemble into one-dimensional zigzag chain in the former and an M2L2 26-membered macrocycle in the latter (Hartshorn et al., 1998). Oh's group have investeigated how metal-ligand stoichiometry can be used to influence the formation of polymeric structures, in which they reacted silver salts with the 1,4-bis(2-pyridylmethoxy)benzene ligand in 1:1 ratio to form one-dimensional zigzag chain and in 1:2 ratio to yield a two-dimensional porous network. Herein we synthesized the same ligand and hoped to obtain the fluorescent material by reacting the ligand with d10 metal, but we get a lot of crystals of the ligand itself and report its crystal structure here.

The X-ray single-crystal analysis of the title compound shows that the 1,4-bis(2-pyridylmethoxy)benzene molecule is centrosymmetric. The planes of two terminal pyridyl groups are parallel and make dihedral angles of 39.9 (1) ° with the plane of the central benzene ring (Figure 1). In the crystal structure, the 1,4-bis(2-pyridylmethoxy)benzene molecules are linked by intermolecular C—H···N hydrogen bonds into one dimensional chains along a axis direction (Table 1, Figure 2).

Related literature top

For synthesis of silver and palladium complexes with the 1,4-bis(2-pyridylmethoxy)benzene ligand, see: Hartshorn & Steel (1998); Oh et al. (2005). For a related structure, see: Gao et al. (2006). For the synthesis of title compound, see: Gao et al. (2004).

Experimental top

The 1,4-bis(2-pyridylmethoxy)benzene was synthesized by the reaction of p-benzenediol and 2-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Gao et al., 2004; Gao et al., 2006). A solution of Zn(NO3)2.6H2O (0.3 g, 1 mol) in water (5 ml) was dropped slowly into a methanol solution (5 mL) of 1,4-bis(2-pyridylmethoxy)benzene (1.46 g, 5 mmol) to give a clear solution. Colourless nod-shaped crystals of scheme were obtained by slow evaporation of the clear solution after four days.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku 1998); cell refinement: RAPID-AUTO (Rigaku 1998); data reduction: CrystalStructure (Rigaku/MSC 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing the one-dimensional hydrogen bonding chain. Dashed lines indicate the hydrogen-bonding interactions and no involving H atoms have been omitted.
1,4-Bis(2-pyridylmethoxy)benzene top
Crystal data top
C18H16N2O2F(000) = 308
Mr = 292.33Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5105 reflections
a = 9.802 (7) Åθ = 3.3–24.5°
b = 3.988 (2) ŵ = 0.09 mm1
c = 18.421 (11) ÅT = 291 K
β = 93.77 (3)°Block, colorless
V = 718.6 (8) Å30.33 × 0.30 × 0.22 mm
Z = 2
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1639 independent reflections
Radiation source: fine-focus sealed tube1308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scanθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.972, Tmax = 0.980k = 54
6515 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.0675P]
where P = (Fo2 + 2Fc2)/3
1639 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H16N2O2V = 718.6 (8) Å3
Mr = 292.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.802 (7) ŵ = 0.09 mm1
b = 3.988 (2) ÅT = 291 K
c = 18.421 (11) Å0.33 × 0.30 × 0.22 mm
β = 93.77 (3)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1639 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1308 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.980Rint = 0.024
6515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.11Δρmax = 0.18 e Å3
1639 reflectionsΔρmin = 0.18 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.12833 (12)0.4754 (4)0.84073 (7)0.0494 (4)
H11.21270.57280.85360.059*
C21.09220 (13)0.4307 (4)0.76808 (7)0.0478 (4)
H21.15050.49720.73290.057*
C30.96805 (14)0.2856 (4)0.74848 (7)0.0484 (4)
H30.94080.25020.69980.058*
C40.88466 (12)0.1935 (4)0.80254 (6)0.0430 (3)
H40.79990.09580.79080.052*
C50.92844 (11)0.2482 (3)0.87452 (6)0.0339 (3)
C60.84341 (11)0.1455 (3)0.93572 (6)0.0381 (3)
H6A0.86020.08790.94810.046*
H6B0.86670.28120.97850.046*
C70.60652 (11)0.0920 (3)0.95792 (6)0.0360 (3)
C80.47231 (12)0.1610 (3)0.93481 (6)0.0393 (3)
H80.45360.27020.89070.047*
C90.63449 (11)0.0704 (3)1.02374 (6)0.0388 (3)
H90.72430.11811.03990.047*
N11.04938 (10)0.3872 (3)0.89418 (5)0.0442 (3)
O10.70397 (8)0.1927 (3)0.91212 (4)0.0492 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0300 (6)0.0620 (9)0.0568 (8)0.0047 (6)0.0072 (5)0.0111 (7)
C20.0370 (6)0.0591 (9)0.0492 (7)0.0080 (6)0.0182 (5)0.0146 (6)
C30.0462 (7)0.0630 (9)0.0368 (6)0.0055 (6)0.0087 (5)0.0019 (6)
C40.0337 (6)0.0543 (8)0.0413 (6)0.0031 (5)0.0042 (5)0.0005 (6)
C50.0270 (5)0.0373 (6)0.0380 (6)0.0033 (4)0.0059 (4)0.0035 (5)
C60.0280 (6)0.0491 (7)0.0375 (6)0.0003 (5)0.0054 (4)0.0043 (5)
C70.0289 (6)0.0473 (7)0.0325 (6)0.0002 (5)0.0080 (4)0.0012 (5)
C80.0327 (6)0.0541 (7)0.0313 (5)0.0025 (5)0.0046 (4)0.0070 (5)
C90.0262 (5)0.0547 (8)0.0357 (6)0.0029 (5)0.0035 (4)0.0041 (5)
N10.0306 (5)0.0593 (7)0.0430 (6)0.0050 (5)0.0044 (4)0.0050 (5)
O10.0272 (4)0.0811 (7)0.0401 (5)0.0027 (4)0.0090 (3)0.0173 (5)
Geometric parameters (Å, º) top
C1—N11.3388 (16)C6—O11.4192 (16)
C1—C21.373 (2)C6—H6A0.9700
C1—H10.9300C6—H6B0.9700
C2—C31.374 (2)C7—O11.3754 (15)
C2—H20.9300C7—C81.3834 (18)
C3—C41.3791 (18)C7—C91.3861 (18)
C3—H30.9300C8—C9i1.3836 (17)
C4—C51.3838 (18)C8—H80.9300
C4—H40.9300C9—C8i1.3837 (17)
C5—N11.3369 (17)C9—H90.9300
C5—C61.5023 (17)
N1—C1—C2123.93 (12)O1—C6—H6A110.2
N1—C1—H1118.0C5—C6—H6A110.2
C2—C1—H1118.0O1—C6—H6B110.2
C1—C2—C3118.55 (11)C5—C6—H6B110.2
C1—C2—H2120.7H6A—C6—H6B108.5
C3—C2—H2120.7O1—C7—C8115.96 (11)
C2—C3—C4118.62 (12)O1—C7—C9124.59 (11)
C2—C3—H3120.7C8—C7—C9119.44 (11)
C4—C3—H3120.7C7—C8—C9i121.12 (11)
C3—C4—C5119.27 (12)C7—C8—H8119.4
C3—C4—H4120.4C9i—C8—H8119.4
C5—C4—H4120.4C8i—C9—C7119.43 (11)
N1—C5—C4122.58 (11)C8i—C9—H9120.3
N1—C5—C6115.82 (11)C7—C9—H9120.3
C4—C5—C6121.58 (11)C5—N1—C1117.05 (11)
O1—C6—C5107.74 (10)C7—O1—C6117.84 (9)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1ii0.932.683.587 (2)165
Symmetry code: (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC18H16N2O2
Mr292.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)9.802 (7), 3.988 (2), 18.421 (11)
β (°) 93.77 (3)
V3)718.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.30 × 0.22
Data collection
DiffractometerRigaku RAXIS-RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.972, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6515, 1639, 1308
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.118, 1.11
No. of reflections1639
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: RAPID-AUTO (Rigaku 1998), CrystalStructure (Rigaku/MSC 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.932.683.587 (2)164.6
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

The authors thank the Specialized Research Funds for Technological Innovative Talent in Harbin (RC2009XK018007) and Heilongjiang University for supporting this study.

References

First citationGao, C.-M., Cao, D. & Zhu, L. (2004). Photogr. Sci. Photochem. 22, 103–107.  CAS Google Scholar
First citationGao, J.-S., Liu, Y., Hou, G.-F., Yu, Y.-H. & Yan, P.-F. (2006). Acta Cryst. E62, o5645–o5646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHartshorn, C.-M. & Steel, P.-J. (1998). J. Chem. Soc. Dalton Trans. pp. 3927–3933.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOh, M., Stern, C.-L. & Mirkin, C.-A. (2005). Inorg. Chem. 44, 2647–2653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds