organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

13-[4,5-Bis(methyl­sulfan­yl)-1,3-di­thiol-2-yl­­idene]-6-oxa-3,9,12,14-tetra­thia­bi­cyclo­[9.3.0]tetra­dec-1(11)-ene

aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 14 September 2009; accepted 15 September 2009; online 26 September 2009)

In the title mol­ecule, C14H18OS8, one O atom, two S atoms and six C atoms form an 11-membered ring with a chair-like conformation; the planes of the two five-membered rings connected by a carbon–carbon double bond form a dihedral angle of 29.97 (11)°. In the crystal, pairs of weak inter­molecular C—H⋯S hydrogen bonds link two mol­ecules into inversion dimers.

Related literature

For background to crown ether-annulated 1,3-dithiol-2-thio­nes, see: Hansen et al. (1993[Hansen, T. K., Jorgensen, T., Jensen, F., Thygesen, P. H., Christiansen, K., Hursthouse, M. B., Harman, M. E., Malik, M. A. & Girmay, B. (1993). J. Org. Chem. 58, 1359-1366.]). For the synthesis, see: Chen et al. (2005[Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570-575.]). For a related structure, see: Hou et al. (2009[Hou, R.-B., Li, B., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o1710.])

[Scheme 1]

Experimental

Crystal data
  • C14H18OS8

  • Mr = 458.76

  • Triclinic, [P \overline 1]

  • a = 8.4542 (17) Å

  • b = 10.158 (2) Å

  • c = 13.612 (3) Å

  • α = 105.00 (3)°

  • β = 97.83 (3)°

  • γ = 112.22 (3)°

  • V = 1008.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 291 K

  • 0.14 × 0.12 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.886, Tmax = 0.901

  • 9961 measured reflections

  • 4572 independent reflections

  • 3655 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.170

  • S = 1.10

  • 4572 reflections

  • 210 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯S2i 0.97 3.00 3.793 (6) 140
Symmetry code: (i) -x, -y, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrathiafulvalene (TTF) derivatives with a fused crown ether ring have received much attention as component molecules for cation sensors (Hansen et al., 1993). We are incorporated TTF with a sulfur hybrid crown ether to synthesize the title compound

The molecule structure of tiltle compound, (I), C14H18S8O, as shown in Fig. 1, all bond lengths and angles are normal and comparable with the related structure (Hou et al., 2009). In the crystal, weak intermolecular C—H···S hydrogen bonds (Table 1) link the molecules into dimer.

Related literature top

For background to crown ether-annulated 1,3-dithiol-2-thiones, see: Hansen et al. (1993). For the synthesis, see: Chen et al. (2005). For a related structure, see: Hou et al. (2009)

Experimental top

The title compound, (I), was prepared according to literature (Chen et al.,2005) and the single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
13-[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]-6-oxa-3,9,12,14- tetrathiabicyclo[9.3.0]tetradec-1(11)-ene top
Crystal data top
C14H18OS8Z = 2
Mr = 458.76F(000) = 476
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4542 (17) ÅCell parameters from 8201 reflections
b = 10.158 (2) Åθ = 3.1–27.5°
c = 13.612 (3) ŵ = 0.88 mm1
α = 105.00 (3)°T = 291 K
β = 97.83 (3)°Block, yellow
γ = 112.22 (3)°0.14 × 0.12 × 0.12 mm
V = 1008.8 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4572 independent reflections
Radiation source: fine-focus sealed tube3655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.886, Tmax = 0.901k = 1113
9961 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0884P)2 + 0.6622P]
where P = (Fo2 + 2Fc2)/3
4572 reflections(Δ/σ)max = 0.016
210 parametersΔρmax = 1.09 e Å3
18 restraintsΔρmin = 0.64 e Å3
Crystal data top
C14H18OS8γ = 112.22 (3)°
Mr = 458.76V = 1008.8 (3) Å3
Triclinic, P1Z = 2
a = 8.4542 (17) ÅMo Kα radiation
b = 10.158 (2) ŵ = 0.88 mm1
c = 13.612 (3) ÅT = 291 K
α = 105.00 (3)°0.14 × 0.12 × 0.12 mm
β = 97.83 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4572 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3655 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.901Rint = 0.032
9961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05618 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.10Δρmax = 1.09 e Å3
4572 reflectionsΔρmin = 0.64 e Å3
210 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0932 (11)0.6629 (10)0.3460 (6)0.147 (3)
H1A0.19230.74840.34430.220*
H1B0.00940.69540.37200.220*
H1C0.03780.59040.27610.220*
C20.3190 (6)0.5333 (5)0.3702 (3)0.0698 (11)
C30.4341 (5)0.4102 (4)0.2243 (3)0.0507 (7)
C40.4512 (4)0.3545 (3)0.1275 (2)0.0461 (7)
C50.3940 (4)0.2608 (3)0.0741 (2)0.0413 (6)
C60.2894 (5)0.2050 (4)0.1861 (3)0.0525 (8)
H6A0.36910.20870.23140.063*
H6B0.23660.27240.19490.063*
C70.2424 (8)0.0950 (6)0.2145 (6)0.1025 (17)
H7A0.31450.05190.14230.123*
H7B0.15830.19690.22400.123*
C80.3534 (6)0.1067 (5)0.2800 (5)0.0943 (17)
H8A0.29050.12880.35170.113*
H8B0.37940.19150.27860.113*
C90.6658 (6)0.0075 (5)0.2091 (4)0.0740 (12)
H9A0.75260.03580.24870.089*
H9B0.63210.09780.21660.089*
C100.7491 (5)0.1017 (4)0.0953 (3)0.0649 (10)
H10A0.82650.06350.06600.078*
H10B0.65630.08820.05890.078*
C110.7040 (4)0.3605 (4)0.0996 (3)0.0469 (7)
H11A0.75890.46820.08740.056*
H11B0.64380.30940.17400.056*
C120.5700 (4)0.3284 (3)0.0371 (2)0.0407 (6)
C130.4928 (6)0.6013 (4)0.4070 (3)0.0661 (10)
C140.7619 (13)0.8815 (12)0.4955 (7)0.176 (4)
H14A0.82390.83680.45450.264*
H14B0.84420.95980.55870.264*
H14C0.70530.92390.45520.264*
O10.5140 (4)0.0229 (3)0.2531 (2)0.0707 (7)
S10.1683 (2)0.5780 (2)0.43099 (13)0.1162 (6)
S20.22953 (15)0.37585 (11)0.25246 (8)0.0674 (3)
S30.26931 (11)0.23691 (10)0.01898 (7)0.0513 (2)
S40.11564 (12)0.01405 (12)0.22817 (9)0.0704 (3)
S50.87487 (12)0.30094 (10)0.06741 (8)0.0602 (3)
S60.65644 (11)0.38520 (10)0.10015 (6)0.0504 (2)
S70.61409 (14)0.52278 (11)0.33593 (7)0.0619 (3)
S80.6096 (2)0.74971 (15)0.52682 (9)0.1030 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.123 (4)0.173 (5)0.156 (5)0.087 (4)0.053 (4)0.031 (4)
C20.087 (3)0.059 (2)0.060 (2)0.022 (2)0.044 (2)0.0171 (18)
C30.062 (2)0.0419 (16)0.0491 (17)0.0220 (15)0.0185 (14)0.0151 (13)
C40.0529 (18)0.0395 (15)0.0474 (16)0.0223 (13)0.0130 (13)0.0134 (13)
C50.0474 (16)0.0328 (13)0.0428 (15)0.0202 (12)0.0075 (12)0.0091 (11)
C60.0540 (19)0.0458 (17)0.0492 (17)0.0240 (15)0.0016 (14)0.0069 (14)
C70.090 (3)0.068 (3)0.143 (4)0.032 (2)0.033 (3)0.029 (3)
C80.068 (3)0.057 (2)0.122 (4)0.027 (2)0.009 (3)0.017 (3)
C90.065 (2)0.053 (2)0.098 (3)0.0339 (19)0.016 (2)0.005 (2)
C100.063 (2)0.0484 (19)0.089 (3)0.0315 (18)0.0179 (19)0.0217 (19)
C110.0480 (17)0.0389 (15)0.0520 (17)0.0195 (13)0.0122 (13)0.0119 (13)
C120.0467 (16)0.0331 (13)0.0423 (15)0.0210 (12)0.0087 (12)0.0083 (11)
C130.089 (3)0.0504 (19)0.0500 (19)0.019 (2)0.0335 (19)0.0126 (16)
C140.172 (5)0.168 (5)0.142 (5)0.025 (4)0.065 (4)0.040 (4)
O10.0666 (17)0.0519 (15)0.090 (2)0.0287 (13)0.0162 (14)0.0151 (14)
S10.1153 (12)0.1136 (11)0.1043 (11)0.0336 (9)0.0798 (10)0.0109 (9)
S20.0694 (6)0.0561 (5)0.0642 (6)0.0132 (5)0.0322 (5)0.0144 (4)
S30.0450 (4)0.0472 (4)0.0537 (5)0.0173 (3)0.0116 (3)0.0093 (3)
S40.0446 (5)0.0586 (6)0.0766 (7)0.0161 (4)0.0007 (4)0.0092 (5)
S50.0433 (5)0.0514 (5)0.0791 (6)0.0218 (4)0.0133 (4)0.0108 (4)
S60.0480 (4)0.0542 (5)0.0435 (4)0.0262 (4)0.0036 (3)0.0059 (3)
S70.0723 (6)0.0586 (5)0.0457 (5)0.0226 (5)0.0151 (4)0.0123 (4)
S80.1440 (13)0.0685 (7)0.0543 (6)0.0108 (8)0.0411 (7)0.0005 (5)
Geometric parameters (Å, º) top
C1—S11.794 (9)C8—O11.405 (6)
C1—H1A0.9600C8—H8A0.9700
C1—H1B0.9600C8—H8B0.9700
C1—H1C0.9600C9—O11.421 (5)
C2—C131.319 (7)C9—C101.495 (6)
C2—S11.744 (4)C9—H9A0.9700
C2—S21.768 (4)C9—H9B0.9700
C3—C41.344 (5)C10—S51.798 (4)
C3—S21.747 (4)C10—H10A0.9700
C3—S71.756 (4)C10—H10B0.9700
C4—S31.747 (3)C11—C121.498 (4)
C4—S61.753 (3)C11—S51.809 (3)
C5—C121.335 (4)C11—H11A0.9700
C5—C61.496 (4)C11—H11B0.9700
C5—S31.762 (3)C12—S61.763 (3)
C6—S41.814 (4)C13—S81.752 (4)
C6—H6A0.9700C13—S71.765 (4)
C6—H6B0.9700C14—S81.665 (9)
C7—C81.397 (8)C14—H14A0.9600
C7—S41.833 (6)C14—H14B0.9600
C7—H7A0.9700C14—H14C0.9600
C7—H7B0.9700
S1—C1—H1A109.5C10—C9—H9A108.9
S1—C1—H1B109.5O1—C9—H9B108.9
H1A—C1—H1B109.5C10—C9—H9B108.9
S1—C1—H1C109.5H9A—C9—H9B107.7
H1A—C1—H1C109.5C9—C10—S5116.1 (3)
H1B—C1—H1C109.5C9—C10—H10A108.3
C13—C2—S1125.9 (3)S5—C10—H10A108.3
C13—C2—S2117.2 (3)C9—C10—H10B108.3
S1—C2—S2116.8 (3)S5—C10—H10B108.3
C4—C3—S2123.3 (3)H10A—C10—H10B107.4
C4—C3—S7123.7 (3)C12—C11—S5113.4 (2)
S2—C3—S7112.98 (18)C12—C11—H11A108.9
C3—C4—S3122.6 (3)S5—C11—H11A108.9
C3—C4—S6123.2 (3)C12—C11—H11B108.9
S3—C4—S6114.08 (18)S5—C11—H11B108.9
C12—C5—C6127.3 (3)H11A—C11—H11B107.7
C12—C5—S3116.9 (2)C5—C12—C11127.1 (3)
C6—C5—S3115.8 (2)C5—C12—S6117.2 (2)
C5—C6—S4113.5 (3)C11—C12—S6115.7 (2)
C5—C6—H6A108.9C2—C13—S8125.2 (3)
S4—C6—H6A108.9C2—C13—S7116.7 (3)
C5—C6—H6B108.9S8—C13—S7117.7 (3)
S4—C6—H6B108.9S8—C14—H14A109.5
H6A—C6—H6B107.7S8—C14—H14B109.5
C8—C7—S4119.7 (5)H14A—C14—H14B109.5
C8—C7—H7A107.4S8—C14—H14C109.5
S4—C7—H7A107.4H14A—C14—H14C109.5
C8—C7—H7B107.4H14B—C14—H14C109.5
S4—C7—H7B107.4C8—O1—C9114.7 (4)
H7A—C7—H7B106.9C2—S1—C1100.8 (3)
C7—C8—O1114.6 (4)C3—S2—C294.04 (19)
C7—C8—H8A108.6C4—S3—C594.20 (15)
O1—C8—H8A108.6C6—S4—C7102.0 (2)
C7—C8—H8B108.6C10—S5—C11102.29 (17)
O1—C8—H8B108.6C4—S6—C1293.92 (15)
H8A—C8—H8B107.6C3—S7—C1394.02 (19)
O1—C9—C10113.4 (3)C14—S8—C13104.6 (3)
O1—C9—H9A108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···S2i0.973.003.793 (6)140
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC14H18OS8
Mr458.76
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.4542 (17), 10.158 (2), 13.612 (3)
α, β, γ (°)105.00 (3), 97.83 (3), 112.22 (3)
V3)1008.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.14 × 0.12 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.886, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
9961, 4572, 3655
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.170, 1.10
No. of reflections4572
No. of parameters210
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.64

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···S2i0.973.003.793 (6)140.0
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programm of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

References

First citationChen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570–575.  CAS Google Scholar
First citationHansen, T. K., Jorgensen, T., Jensen, F., Thygesen, P. H., Christiansen, K., Hursthouse, M. B., Harman, M. E., Malik, M. A. & Girmay, B. (1993). J. Org. Chem. 58, 1359–1366.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R.-B., Li, B., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds