organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­oxy­benzohydrazide

aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: uzzmma@yahoo.com

(Received 14 September 2009; accepted 21 September 2009; online 26 September 2009)

The title compound, C8H10N2O2, crystallizes as two independent mol­ecules linked by N—H⋯N and N—H⋯O hydrogen bonds into a linear chain running along the a axis of the monoclinic unit cell. The intra- and inter­molecular hydrogen bonds are described as a two-ring R22(10) motif. The six-membered R11(6) rings formed by the intra­molecular inter­actions are almost planar (r.m.s. deviations 0.06 and 0.08 Å). In one mol­ecule, the aromatic and hydrogen-bonded rings are oriented at 4.8 (2)°, whereas in the other mol­ecule these rings are oriented at 6.1 (4)°.

Related literature

For related structures, see: Ashiq et al. (2009[Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.]); Kallel et al. (1992[Kallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137-140.]); Saraogi et al. (2002[Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.]). For the biological activity of hydrazides, see: Ara et al. (2007[Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Maqsood et al. (2006[Maqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enzym. Inhib. Med. Chem. 21, 37-42.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O2

  • Mr = 166.18

  • Monoclinic, P 21 /c

  • a = 7.6486 (5) Å

  • b = 10.7123 (7) Å

  • c = 20.4781 (13) Å

  • β = 95.563 (3)°

  • V = 1669.95 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.22 × 0.19 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 15129 measured reflections

  • 2938 independent reflections

  • 1695 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.02

  • 2938 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21N⋯O3i 0.88 (2) 2.27 (2) 3.091 (3) 155 (2)
N3—H3N⋯N2ii 0.87 (2) 2.44 (2) 3.111 (3) 134.2 (18)
N4—H41N⋯O3iii 0.96 (2) 2.25 (3) 3.136 (3) 152.3 (19)
N4—H42N⋯O1iv 0.87 (2) 2.26 (2) 3.055 (3) 153 (2)
N1—H1N⋯O2 0.89 (2) 1.98 (2) 2.655 (2) 130.8 (17)
N3—H3N⋯O4 0.86 (2) 2.01 (2) 2.653 (2) 129.9 (19)
Symmetry codes: (i) x-1, y-1, z; (ii) x, y+1, z; (iii) -x+2, -y+2, -z; (iv) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazides are known to have different biological activities and have been used for the synthesis of various heterocyclic compounds (El-Emam et al., 2004). In order to study the biological activity of 2-methoxybenzohydrazide, we undertook the synthesis of title compound and report its crystal structure in this paper. The title compound I was found to be antifungal (Maqsood et al., 2006) and phytotoxic (Ara et al., 2007). The unit cell contains two crystallographically unique molecules (Fig. 1). The structures of benzhydrazide (Kallel et al., 1992), para-chloro (Saraogi et al., 2002) and para-methoxy (Ashiq et al., 2009), analogues of (I) have already been reported.

The molecular packing diagram (Fig. 2) shows the presence of intermolecular hydrogen bonds of N—H···N and N—H···O types (details are given in Table 1) results in the formation of two ring motifs with graphic notation R22(10) (Bernstein et al., 1995), for each. Intramolecular interactions give rise six membered rings C (O2/C6/C1/C7/N1/H1N) and D (O4/C14/C9/C15/N3/H3N) R11(6) (Bernstein et al., 1995), in each molecule. In one molecule, the A and C rings are oriented at 4.8 (2)°, whereas in the other molecule, the B and D rings are oriented at 6.1 (4)°.

Related literature top

For related structures, see: Ashiq et al. (2009); Kallel et al. (1992); Saraogi et al. (2002). For biological activity of hydrazides, see: Ara et al. (2007); El-Emam et al. (2004); Maqsood et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-2-methoxybenzoate (3.6 g, 20 mmol) in 75 ml e thanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 2-methoxybenzohydrazide (yield 78%) (Ara et al., 2007). Colourless single crystals of (I) were obtained by slow evaporation of methanol solution at room temperature.

Refinement top

The Hydrogen atoms bonded to aryl and methyl Carbon atoms were positioned geometrically, with C—H = 0.93 Å and C—H = 0.96 Å respectively. The thermal parameter of H-atoms of methyl group was taken 1.5 times of the parent C-atom, whereas for aromatic H-atoms it was taken 1.2 times of their parent atoms. Atoms H1N, H21N, H22N H3N, H41N, H42N with N–H= 0.86 (2)–0.96 (2)Å are located in a difference Fourier map and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound with the ellipsoids drawn at the 40% probability level, showing the atomic labels.
[Figure 2] Fig. 2. A unit cell packing diagram of (I) showing hydrogen bonds drawn by dashed lines. Hydrogen atoms not involved in H-bonding have been omitted.
2-Methoxybenzohydrazide top
Crystal data top
C8H10N2O2F(000) = 704
Mr = 166.18Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2389 reflections
a = 7.6486 (5) Åθ = 2.7–22.7°
b = 10.7123 (7) ŵ = 0.10 mm1
c = 20.4781 (13) ÅT = 296 K
β = 95.563 (3)°Needle, colourless
V = 1669.95 (19) Å30.22 × 0.19 × 0.11 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 99
15129 measured reflectionsk = 1212
2938 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2288P]
where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C8H10N2O2V = 1669.95 (19) Å3
Mr = 166.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.6486 (5) ŵ = 0.10 mm1
b = 10.7123 (7) ÅT = 296 K
c = 20.4781 (13) Å0.22 × 0.19 × 0.11 mm
β = 95.563 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1695 reflections with I > 2σ(I)
15129 measured reflectionsRint = 0.045
2938 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.12 e Å3
2938 reflectionsΔρmin = 0.16 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1822 (2)0.26307 (16)0.04342 (10)0.0827 (6)
O20.6697 (2)0.39866 (15)0.11303 (8)0.0656 (5)
N20.4302 (3)0.0831 (2)0.06058 (12)0.0615 (6)
N10.4586 (2)0.21149 (17)0.07266 (9)0.0525 (5)
H1N0.569 (3)0.235 (2)0.0811 (11)0.063*
H21N0.335 (3)0.066 (2)0.0792 (11)0.063*
H22N0.400 (3)0.081 (2)0.0191 (12)0.063*
C10.3759 (3)0.43070 (19)0.07062 (10)0.0437 (5)
C20.2404 (3)0.5132 (2)0.05221 (12)0.0618 (7)
H20.13170.48150.03590.074*
C30.2614 (5)0.6394 (3)0.05727 (14)0.0803 (9)
H30.16830.69250.04420.096*
C40.4197 (5)0.6872 (3)0.08160 (14)0.0802 (9)
H40.43410.77320.08530.096*
C50.5589 (4)0.6088 (2)0.10075 (12)0.0669 (7)
H50.66640.64190.11740.080*
C60.5379 (3)0.4812 (2)0.09505 (10)0.0486 (6)
C70.3323 (3)0.2961 (2)0.06103 (10)0.0462 (6)
C80.8411 (3)0.4463 (3)0.13126 (16)0.0977 (10)
H8A0.84300.48780.17290.147*
H8B0.87200.50450.09860.147*
H8C0.92390.37870.13460.147*
O31.10200 (18)0.94743 (13)0.10222 (7)0.0552 (4)
O40.64141 (19)0.94752 (16)0.19111 (7)0.0652 (5)
N30.8244 (2)1.01543 (17)0.09341 (9)0.0471 (5)
H3N0.720 (3)1.012 (2)0.1063 (10)0.057*
N40.8484 (3)1.1070 (2)0.04533 (11)0.0558 (5)
H41N0.862 (3)1.062 (2)0.0055 (12)0.067*
H42N0.950 (3)1.140 (2)0.0583 (11)0.067*
C90.9165 (3)0.85915 (19)0.17588 (10)0.0406 (5)
C101.0450 (3)0.7726 (2)0.19540 (11)0.0572 (6)
H101.14450.76820.17280.069*
C111.0305 (4)0.6926 (2)0.24713 (13)0.0740 (8)
H111.11780.63410.25870.089*
C120.8864 (4)0.7004 (3)0.28123 (13)0.0738 (8)
H120.87680.64760.31680.089*
C130.7564 (3)0.7843 (2)0.26394 (11)0.0615 (7)
H130.65910.78860.28780.074*
C140.7681 (3)0.8634 (2)0.21101 (10)0.0459 (5)
C150.9534 (3)0.94351 (18)0.12070 (10)0.0400 (5)
C160.4932 (4)0.9605 (4)0.22740 (15)0.1152 (13)
H16A0.43150.88250.22750.173*
H16B0.41641.02360.20750.173*
H16C0.53160.98420.27170.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (10)0.0727 (12)0.1326 (16)0.0064 (9)0.0057 (10)0.0055 (11)
O20.0463 (10)0.0639 (11)0.0838 (12)0.0039 (8)0.0079 (8)0.0035 (9)
N20.0550 (13)0.0518 (14)0.0805 (15)0.0044 (10)0.0207 (12)0.0025 (12)
N10.0415 (11)0.0404 (12)0.0756 (14)0.0010 (10)0.0055 (10)0.0032 (10)
C10.0458 (13)0.0462 (14)0.0409 (12)0.0049 (11)0.0136 (10)0.0060 (10)
C20.0587 (15)0.0638 (18)0.0644 (16)0.0143 (13)0.0142 (12)0.0144 (13)
C30.100 (2)0.061 (2)0.083 (2)0.0307 (18)0.0275 (18)0.0185 (16)
C40.123 (3)0.0454 (17)0.079 (2)0.0049 (19)0.045 (2)0.0001 (15)
C50.086 (2)0.0551 (17)0.0623 (17)0.0126 (15)0.0217 (14)0.0100 (13)
C60.0554 (14)0.0487 (15)0.0436 (13)0.0014 (12)0.0136 (11)0.0008 (11)
C70.0389 (13)0.0556 (15)0.0452 (13)0.0005 (12)0.0104 (10)0.0047 (11)
C80.0504 (16)0.114 (3)0.124 (3)0.0211 (16)0.0132 (16)0.007 (2)
O30.0440 (9)0.0614 (10)0.0626 (10)0.0031 (7)0.0167 (7)0.0124 (8)
O40.0523 (10)0.0894 (13)0.0575 (10)0.0187 (9)0.0243 (8)0.0182 (9)
N30.0421 (11)0.0499 (12)0.0506 (11)0.0010 (9)0.0107 (9)0.0135 (9)
N40.0528 (12)0.0576 (14)0.0571 (13)0.0035 (10)0.0063 (10)0.0184 (11)
C90.0446 (12)0.0366 (12)0.0410 (12)0.0033 (10)0.0069 (10)0.0014 (10)
C100.0569 (15)0.0503 (15)0.0657 (16)0.0051 (12)0.0131 (12)0.0071 (13)
C110.081 (2)0.0605 (17)0.0807 (19)0.0116 (14)0.0108 (16)0.0273 (15)
C120.089 (2)0.0649 (18)0.0679 (18)0.0072 (16)0.0074 (16)0.0266 (15)
C130.0641 (17)0.0711 (18)0.0512 (15)0.0101 (14)0.0149 (12)0.0114 (13)
C140.0463 (13)0.0507 (14)0.0406 (13)0.0027 (11)0.0039 (10)0.0005 (11)
C150.0416 (12)0.0389 (12)0.0401 (12)0.0015 (10)0.0079 (10)0.0031 (10)
C160.078 (2)0.184 (4)0.093 (2)0.051 (2)0.0534 (18)0.039 (2)
Geometric parameters (Å, º) top
O1—C71.222 (2)O3—C151.233 (2)
O2—C61.364 (3)O4—C141.356 (2)
O2—C81.423 (3)O4—C161.421 (3)
N2—N11.410 (3)N3—C151.331 (3)
N2—H21N0.88 (2)N3—N41.414 (2)
N2—H22N0.86 (2)N3—H3N0.87 (2)
N1—C71.329 (3)N4—H41N0.96 (2)
N1—H1N0.88 (2)N4—H42N0.87 (2)
C1—C21.386 (3)C9—C101.382 (3)
C1—C61.399 (3)C9—C141.403 (3)
C1—C71.488 (3)C9—C151.495 (3)
C2—C31.364 (4)C10—C111.375 (3)
C2—H20.9300C10—H100.9300
C3—C41.364 (4)C11—C121.363 (3)
C3—H30.9300C11—H110.9300
C4—C51.383 (4)C12—C131.362 (3)
C4—H40.9300C12—H120.9300
C5—C61.380 (3)C13—C141.385 (3)
C5—H50.9300C13—H130.9300
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C6—O2—C8118.5 (2)C14—O4—C16119.39 (19)
N1—N2—H21N104.3 (15)C15—N3—N4123.54 (18)
N1—N2—H22N102.9 (16)C15—N3—H3N120.8 (14)
H21N—N2—H22N105 (2)N4—N3—H3N115.5 (15)
C7—N1—N2122.49 (19)N3—N4—H41N105.8 (14)
C7—N1—H1N120.3 (15)N3—N4—H42N104.1 (15)
N2—N1—H1N116.3 (15)H41N—N4—H42N107 (2)
C2—C1—C6117.6 (2)C10—C9—C14117.5 (2)
C2—C1—C7115.5 (2)C10—C9—C15116.33 (18)
C6—C1—C7126.91 (19)C14—C9—C15126.12 (19)
C3—C2—C1122.1 (3)C11—C10—C9122.2 (2)
C3—C2—H2118.9C11—C10—H10118.9
C1—C2—H2118.9C9—C10—H10118.9
C2—C3—C4119.6 (3)C12—C11—C10119.1 (2)
C2—C3—H3120.2C12—C11—H11120.4
C4—C3—H3120.2C10—C11—H11120.4
C3—C4—C5120.4 (3)C13—C12—C11120.9 (2)
C3—C4—H4119.8C13—C12—H12119.6
C5—C4—H4119.8C11—C12—H12119.6
C6—C5—C4119.9 (3)C12—C13—C14120.4 (2)
C6—C5—H5120.1C12—C13—H13119.8
C4—C5—H5120.1C14—C13—H13119.8
O2—C6—C5122.8 (2)O4—C14—C13122.9 (2)
O2—C6—C1116.9 (2)O4—C14—C9117.24 (18)
C5—C6—C1120.3 (2)C13—C14—C9119.9 (2)
O1—C7—N1120.0 (2)O3—C15—N3121.28 (19)
O1—C7—C1120.8 (2)O3—C15—C9119.98 (19)
N1—C7—C1119.20 (19)N3—C15—C9118.72 (17)
O2—C8—H8A109.5O4—C16—H16A109.5
O2—C8—H8B109.5O4—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
O2—C8—H8C109.5O4—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C6—C1—C2—C30.1 (3)C14—C9—C10—C110.0 (3)
C7—C1—C2—C3179.1 (2)C15—C9—C10—C11177.5 (2)
C1—C2—C3—C40.5 (4)C9—C10—C11—C121.3 (4)
C2—C3—C4—C50.4 (4)C10—C11—C12—C131.2 (4)
C3—C4—C5—C60.2 (4)C11—C12—C13—C140.2 (4)
C8—O2—C6—C57.4 (3)C16—O4—C14—C133.1 (3)
C8—O2—C6—C1173.2 (2)C16—O4—C14—C9176.4 (2)
C4—C5—C6—O2180.0 (2)C12—C13—C14—O4179.1 (2)
C4—C5—C6—C10.7 (3)C12—C13—C14—C91.5 (3)
C2—C1—C6—O2179.89 (18)C10—C9—C14—O4179.18 (19)
C7—C1—C6—O21.1 (3)C15—C9—C14—O43.7 (3)
C2—C1—C6—C50.5 (3)C10—C9—C14—C131.3 (3)
C7—C1—C6—C5179.5 (2)C15—C9—C14—C13175.8 (2)
N2—N1—C7—O15.1 (3)N4—N3—C15—O34.7 (3)
N2—N1—C7—C1175.71 (19)N4—N3—C15—C9173.79 (19)
C2—C1—C7—O16.0 (3)C10—C9—C15—O311.5 (3)
C6—C1—C7—O1175.0 (2)C14—C9—C15—O3165.7 (2)
C2—C1—C7—N1174.84 (19)C10—C9—C15—N3169.98 (19)
C6—C1—C7—N14.2 (3)C14—C9—C15—N312.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21N···O3i0.88 (2)2.27 (2)3.091 (3)155 (2)
N3—H3N···N2ii0.87 (2)2.44 (2)3.111 (3)134.2 (18)
N4—H41N···O3iii0.96 (2)2.25 (3)3.136 (3)152.3 (19)
N4—H42N···O1iv0.87 (2)2.26 (2)3.055 (3)153 (2)
N1—H1N···O20.89 (2)1.98 (2)2.655 (2)130.8 (17)
N3—H3N···O40.86 (2)2.01 (2)2.653 (2)129.9 (19)
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z; (iii) x+2, y+2, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H10N2O2
Mr166.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.6486 (5), 10.7123 (7), 20.4781 (13)
β (°) 95.563 (3)
V3)1669.95 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.19 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15129, 2938, 1695
Rint0.045
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.02
No. of reflections2938
No. of parameters237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21N···O3i0.88 (2)2.27 (2)3.091 (3)155 (2)
N3—H3N···N2ii0.87 (2)2.44 (2)3.111 (3)134.2 (18)
N4—H41N···O3iii0.96 (2)2.25 (3)3.136 (3)152.3 (19)
N4—H42N···O1iv0.87 (2)2.26 (2)3.055 (3)153 (2)
N1—H1N···O20.89 (2)1.98 (2)2.655 (2)130.8 (17)
N3—H3N···O40.86 (2)2.01 (2)2.653 (2)129.9 (19)
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z; (iii) x+2, y+2, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and Bana International for support in collecting the crystallographic data. The authors also thank the University of Karachi, Pakistan, for financial support (Dean of the Faculty of Science Research Grant).

References

First citationAra, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58–71.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137–140.  CrossRef CAS Web of Science Google Scholar
First citationMaqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enzym. Inhib. Med. Chem. 21, 37–42.  Web of Science CrossRef CAS Google Scholar
First citationSaraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341–o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds