metal-organic compounds
Tetraaquabis(6-carboxy-1H-benzimidazole-5-carboxylato-κN3)nickel(II) dimethylformamide disolvate dihydrate
aCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Agriculture, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com
The title compound, [Ni(C9H45N2O4)2(H2O)4]·2C3H7NO·2H2O, has the NiII center coordinated by four water molecules and two N atoms from two 1H-benzimidazole-5,6-dicarboxylate ligands in an octahedral geometry. The molecule interacts with the solvent water and dimethylformamide molecules through N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional supramolecular network. The metal atom lies on a center of inversion.
Related literature
For the crystal structures of 1H-benzimidazole-5,6-dicarboxylate complexes, see: Gao et al. (2008); Lo et al. (2007); Song et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL9.
Supporting information
10.1107/S1600536809038069/ng2646sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038069/ng2646Isup2.hkl
A C3H7NO solution (20 mL)containing Ni(NO3)2(0.1 mmol)and 1H-benzimidazole-5,6-dicarboxylic acid(0.2 mmol) was stirred for a few minutes in air,and left to stand at room temperature for about four weeks, then the green crystals were obtained.
Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL9 (Sheldrick, 2008).Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z.] | |
Fig. 2. A view of the three-dimensional network constructed by O—H···O and N—H···O hydrogen bonding interactions. |
[Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O | Z = 1 |
Mr = 723.30 | F(000) = 378 |
Triclinic, P1 | Dx = 1.569 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5327 (17) Å | Cell parameters from 3600 reflections |
b = 9.1387 (18) Å | θ = 1.4–28° |
c = 11.624 (2) Å | µ = 0.72 mm−1 |
α = 100.80 (3)° | T = 293 K |
β = 103.03 (3)° | Block, green |
γ = 114.04 (3)° | 0.27 × 0.18 × 0.17 mm |
V = 765.7 (3) Å3 |
Rigaku/MSC Mercury CCD diffractometer | 2737 independent reflections |
Radiation source: fine-focus sealed tube | 2613 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 25.2°, θmin = 3.3° |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −10→10 |
Tmin = 0.830, Tmax = 0.888 | k = −10→9 |
6116 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.1051P)2 + 0.01P] where P = (Fo2 + 2Fc2)/3 |
2737 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.61 e Å−3 |
9 restraints | Δρmin = −0.32 e Å−3 |
[Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O | γ = 114.04 (3)° |
Mr = 723.30 | V = 765.7 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.5327 (17) Å | Mo Kα radiation |
b = 9.1387 (18) Å | µ = 0.72 mm−1 |
c = 11.624 (2) Å | T = 293 K |
α = 100.80 (3)° | 0.27 × 0.18 × 0.17 mm |
β = 103.03 (3)° |
Rigaku/MSC Mercury CCD diffractometer | 2737 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2613 reflections with I > 2σ(I) |
Tmin = 0.830, Tmax = 0.888 | Rint = 0.020 |
6116 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 9 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.20 | Δρmax = 0.61 e Å−3 |
2737 reflections | Δρmin = −0.32 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2895 (3) | 0.4030 (3) | 0.2261 (2) | 0.0301 (5) | |
H1 | 0.2030 | 0.3062 | 0.2339 | 0.036* | |
N1 | 0.4387 (2) | 0.5153 (2) | 0.31852 (17) | 0.0272 (4) | |
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.02200 (19) | |
C2 | 0.4271 (3) | 0.5938 (3) | 0.1432 (2) | 0.0272 (5) | |
N2 | 0.2739 (2) | 0.4415 (2) | 0.11945 (17) | 0.0324 (4) | |
H2 | 0.1861 | 0.3832 | 0.0499 | 0.039* | |
C3 | 0.5296 (3) | 0.6391 (3) | 0.2686 (2) | 0.0252 (4) | |
O3W | 0.75996 (16) | 0.54366 (16) | 0.50333 (12) | 0.0345 (4) | |
C4 | 0.6923 (3) | 0.7892 (3) | 0.3224 (2) | 0.0271 (5) | |
H4 | 0.7612 | 0.8210 | 0.4056 | 0.033* | |
C5 | 0.7498 (3) | 0.8909 (3) | 0.2494 (2) | 0.0248 (4) | |
O1 | 0.9319 (2) | 1.1775 (2) | 0.37262 (18) | 0.0456 (5) | |
C6 | 0.6429 (3) | 0.8423 (3) | 0.1223 (2) | 0.0280 (5) | |
O2 | 1.0690 (2) | 1.0376 (2) | 0.3063 (2) | 0.0522 (5) | |
C7 | 0.4811 (3) | 0.6925 (3) | 0.0690 (2) | 0.0307 (5) | |
H7 | 0.4113 | 0.6596 | −0.0141 | 0.037* | |
C8 | 0.6944 (3) | 0.9451 (3) | 0.0384 (2) | 0.0327 (5) | |
C9 | 0.9321 (3) | 1.0500 (3) | 0.31293 (19) | 0.0261 (5) | |
O2W | 0.41483 (16) | 0.24688 (15) | 0.42925 (12) | 0.0295 (4) | |
H6W | 0.8553 | 0.6369 | 0.5347 | 0.044* | |
H5W | 0.7568 | 0.4874 | 0.4361 | 0.044* | |
H3W | 0.4755 | 0.2330 | 0.3845 | 0.044* | |
H4W | 0.3028 | 0.1830 | 0.3922 | 0.044* | |
O3 | 0.6082 (3) | 0.8962 (3) | −0.07127 (17) | 0.0591 (6) | |
O4 | 0.8343 (3) | 1.0927 (3) | 0.09199 (18) | 0.0633 (7) | |
H4A | 0.8481 | 1.1446 | 0.0415 | 0.095* | |
O1W | 0.3424 (2) | 0.7464 (3) | 0.69171 (17) | 0.0487 (5) | |
H1W | 0.3996 | 0.7866 | 0.7687 | 0.073* | |
H2W | 0.2637 | 0.7784 | 0.6716 | 0.073* | |
O5 | 0.0718 (2) | 0.7407 (2) | 0.05904 (16) | 0.0462 (5) | |
C12 | −0.0319 (4) | 0.5721 (4) | 0.2255 (3) | 0.0570 (8) | |
H12A | −0.1264 | 0.6015 | 0.2316 | 0.086* | |
H12B | −0.0161 | 0.5128 | 0.2835 | 0.086* | |
H12C | −0.0653 | 0.5013 | 0.1426 | 0.086* | |
N3 | 0.1376 (3) | 0.7248 (3) | 0.25427 (18) | 0.0352 (5) | |
C11 | 0.2581 (4) | 0.8066 (4) | 0.3847 (2) | 0.0522 (7) | |
H11A | 0.3625 | 0.9074 | 0.3914 | 0.078* | |
H11B | 0.2971 | 0.7308 | 0.4129 | 0.078* | |
H11C | 0.1933 | 0.8351 | 0.4351 | 0.078* | |
C10 | 0.1722 (3) | 0.7970 (3) | 0.1704 (2) | 0.0356 (5) | |
H10 | 0.2794 | 0.8978 | 0.1949 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0264 (11) | 0.0250 (11) | 0.0280 (11) | 0.0029 (9) | 0.0068 (9) | 0.0092 (9) |
N1 | 0.0272 (9) | 0.0227 (9) | 0.0259 (9) | 0.0057 (7) | 0.0082 (7) | 0.0098 (7) |
Ni1 | 0.0196 (3) | 0.0191 (3) | 0.0217 (3) | 0.00424 (18) | 0.00625 (17) | 0.00652 (17) |
C2 | 0.0216 (10) | 0.0230 (10) | 0.0262 (11) | 0.0024 (8) | 0.0062 (8) | 0.0055 (9) |
N2 | 0.0256 (9) | 0.0274 (10) | 0.0254 (9) | −0.0008 (8) | 0.0021 (7) | 0.0071 (8) |
C3 | 0.0242 (10) | 0.0248 (10) | 0.0264 (11) | 0.0093 (8) | 0.0112 (8) | 0.0099 (9) |
O3W | 0.0231 (8) | 0.0295 (8) | 0.0380 (9) | 0.0049 (6) | 0.0105 (6) | 0.0003 (7) |
C4 | 0.0231 (10) | 0.0266 (11) | 0.0223 (10) | 0.0059 (8) | 0.0037 (8) | 0.0060 (8) |
C5 | 0.0223 (10) | 0.0237 (11) | 0.0245 (10) | 0.0075 (8) | 0.0074 (8) | 0.0078 (8) |
O1 | 0.0282 (9) | 0.0305 (9) | 0.0559 (11) | 0.0043 (7) | 0.0102 (7) | −0.0071 (8) |
C6 | 0.0252 (10) | 0.0278 (11) | 0.0258 (11) | 0.0073 (9) | 0.0082 (8) | 0.0098 (9) |
O2 | 0.0233 (9) | 0.0324 (9) | 0.0833 (15) | 0.0073 (7) | 0.0126 (8) | 0.0002 (9) |
C7 | 0.0283 (11) | 0.0312 (11) | 0.0217 (10) | 0.0069 (9) | 0.0037 (8) | 0.0072 (9) |
C8 | 0.0295 (11) | 0.0328 (12) | 0.0266 (12) | 0.0063 (9) | 0.0078 (9) | 0.0113 (10) |
C9 | 0.0220 (10) | 0.0249 (11) | 0.0249 (11) | 0.0059 (9) | 0.0050 (8) | 0.0095 (9) |
O2W | 0.0250 (7) | 0.0233 (7) | 0.0316 (8) | 0.0058 (6) | 0.0076 (6) | 0.0054 (6) |
O3 | 0.0561 (12) | 0.0527 (12) | 0.0269 (9) | −0.0082 (9) | 0.0002 (8) | 0.0191 (9) |
O4 | 0.0599 (12) | 0.0464 (11) | 0.0327 (10) | −0.0161 (9) | −0.0030 (9) | 0.0224 (9) |
O1W | 0.0396 (10) | 0.0590 (12) | 0.0390 (10) | 0.0258 (9) | 0.0087 (8) | −0.0036 (9) |
O5 | 0.0409 (10) | 0.0468 (10) | 0.0272 (9) | 0.0019 (8) | 0.0025 (7) | 0.0156 (8) |
C12 | 0.0560 (17) | 0.0591 (18) | 0.0607 (19) | 0.0195 (14) | 0.0312 (15) | 0.0326 (15) |
N3 | 0.0421 (11) | 0.0367 (11) | 0.0260 (10) | 0.0184 (9) | 0.0101 (9) | 0.0103 (9) |
C11 | 0.078 (2) | 0.0531 (17) | 0.0285 (13) | 0.0379 (16) | 0.0077 (13) | 0.0140 (12) |
C10 | 0.0363 (12) | 0.0301 (12) | 0.0302 (12) | 0.0083 (10) | 0.0065 (10) | 0.0104 (10) |
C1—N1 | 1.317 (3) | C6—C7 | 1.386 (3) |
C1—N2 | 1.344 (3) | C6—C8 | 1.492 (3) |
C1—H1 | 0.9300 | O2—C9 | 1.236 (3) |
N1—C3 | 1.397 (3) | C7—H7 | 0.9300 |
N1—Ni1 | 2.1014 (18) | C8—O3 | 1.209 (3) |
Ni1—O2W | 2.0501 (14) | C8—O4 | 1.293 (3) |
Ni1—O2Wi | 2.0501 (14) | O2W—H3W | 0.8401 |
Ni1—O3Wi | 2.0773 (13) | O2W—H4W | 0.8400 |
Ni1—O3W | 2.0773 (13) | O4—H4A | 0.8200 |
Ni1—N1i | 2.1014 (18) | O1W—H1W | 0.8408 |
C2—C7 | 1.379 (3) | O1W—H2W | 0.8405 |
C2—N2 | 1.390 (3) | O5—C10 | 1.252 (3) |
C2—C3 | 1.401 (3) | C12—N3 | 1.454 (4) |
N2—H2 | 0.8600 | C12—H12A | 0.9600 |
C3—C4 | 1.391 (3) | C12—H12B | 0.9600 |
O3W—H6W | 0.8402 | C12—H12C | 0.9600 |
O3W—H5W | 0.8394 | N3—C10 | 1.298 (3) |
C4—C5 | 1.391 (3) | N3—C11 | 1.470 (3) |
C4—H4 | 0.9300 | C11—H11A | 0.9600 |
C5—C6 | 1.424 (3) | C11—H11B | 0.9600 |
C5—C9 | 1.522 (3) | C11—H11C | 0.9600 |
O1—C9 | 1.240 (3) | C10—H10 | 0.9300 |
N1—C1—N2 | 113.71 (18) | C4—C5—C9 | 115.96 (18) |
N1—C1—H1 | 123.1 | C6—C5—C9 | 123.63 (19) |
N2—C1—H1 | 123.1 | C7—C6—C5 | 120.7 (2) |
C1—N1—C3 | 104.99 (18) | C7—C6—C8 | 115.74 (19) |
C1—N1—Ni1 | 123.63 (15) | C5—C6—C8 | 123.59 (19) |
C3—N1—Ni1 | 131.30 (15) | C2—C7—C6 | 117.85 (19) |
O2W—Ni1—O2Wi | 180.0 | C2—C7—H7 | 121.1 |
O2W—Ni1—O3Wi | 91.85 (6) | C6—C7—H7 | 121.1 |
O2Wi—Ni1—O3Wi | 88.15 (6) | O3—C8—O4 | 122.2 (2) |
O2W—Ni1—O3W | 88.15 (6) | O3—C8—C6 | 122.5 (2) |
O2Wi—Ni1—O3W | 91.85 (6) | O4—C8—C6 | 115.3 (2) |
O3Wi—Ni1—O3W | 180.0 | O2—C9—O1 | 125.6 (2) |
O2W—Ni1—N1i | 90.06 (7) | O2—C9—C5 | 116.7 (2) |
O2Wi—Ni1—N1i | 89.94 (7) | O1—C9—C5 | 117.58 (18) |
O3Wi—Ni1—N1i | 90.14 (7) | Ni1—O2W—H3W | 109.0 |
O3W—Ni1—N1i | 89.86 (7) | Ni1—O2W—H4W | 117.7 |
O2W—Ni1—N1 | 89.94 (7) | H3W—O2W—H4W | 110.9 |
O2Wi—Ni1—N1 | 90.06 (7) | C8—O4—H4A | 109.5 |
O3Wi—Ni1—N1 | 89.86 (7) | H1W—O1W—H2W | 111.4 |
O3W—Ni1—N1 | 90.14 (7) | N3—C12—H12A | 109.5 |
N1i—Ni1—N1 | 180.0 | N3—C12—H12B | 109.5 |
C7—C2—N2 | 131.9 (2) | H12A—C12—H12B | 109.5 |
C7—C2—C3 | 122.56 (19) | N3—C12—H12C | 109.5 |
N2—C2—C3 | 105.48 (19) | H12A—C12—H12C | 109.5 |
C1—N2—C2 | 106.79 (18) | H12B—C12—H12C | 109.5 |
C1—N2—H2 | 126.6 | C10—N3—C12 | 121.1 (2) |
C2—N2—H2 | 126.6 | C10—N3—C11 | 120.7 (2) |
C4—C3—N1 | 131.2 (2) | C12—N3—C11 | 117.8 (2) |
C4—C3—C2 | 119.76 (19) | N3—C11—H11A | 109.5 |
N1—C3—C2 | 109.02 (19) | N3—C11—H11B | 109.5 |
Ni1—O3W—H6W | 126.3 | H11A—C11—H11B | 109.5 |
Ni1—O3W—H5W | 111.1 | N3—C11—H11C | 109.5 |
H6W—O3W—H5W | 111.6 | H11A—C11—H11C | 109.5 |
C5—C4—C3 | 118.77 (19) | H11B—C11—H11C | 109.5 |
C5—C4—H4 | 120.6 | O5—C10—N3 | 124.8 (2) |
C3—C4—H4 | 120.6 | O5—C10—H10 | 117.6 |
C4—C5—C6 | 120.39 (19) | N3—C10—H10 | 117.6 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O1ii | 0.84 | 1.86 | 2.693 (3) | 173 |
O1W—H1W···O3iii | 0.84 | 2.00 | 2.801 (3) | 160 |
O4—H4A···O5iv | 0.82 | 1.78 | 2.585 (3) | 167 |
O2W—H4W···O2v | 0.84 | 1.79 | 2.624 (3) | 176 |
O2W—H3W···O1Wi | 0.84 | 1.92 | 2.741 (2) | 166 |
O3W—H5W···O1Wi | 0.84 | 2.06 | 2.810 (3) | 148 |
O3W—H6W···O1vi | 0.84 | 1.81 | 2.634 (3) | 169 |
N2—H2···O5vii | 0.86 | 1.98 | 2.779 (3) | 155 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, y, z+1; (iv) −x+1, −y+2, −z; (v) x−1, y−1, z; (vi) −x+2, −y+2, −z+1; (vii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O |
Mr | 723.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.5327 (17), 9.1387 (18), 11.624 (2) |
α, β, γ (°) | 100.80 (3), 103.03 (3), 114.04 (3) |
V (Å3) | 765.7 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.72 |
Crystal size (mm) | 0.27 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.830, 0.888 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6116, 2737, 2613 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.137, 1.20 |
No. of reflections | 2737 |
No. of parameters | 217 |
No. of restraints | 9 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.32 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL9 (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O1i | 0.84 | 1.86 | 2.693 (3) | 172.6 |
O1W—H1W···O3ii | 0.84 | 2.00 | 2.801 (3) | 159.7 |
O4—H4A···O5iii | 0.82 | 1.78 | 2.585 (3) | 166.8 |
O2W—H4W···O2iv | 0.84 | 1.79 | 2.624 (3) | 175.8 |
O2W—H3W···O1Wv | 0.84 | 1.92 | 2.741 (2) | 166.3 |
O3W—H5W···O1Wv | 0.84 | 2.06 | 2.810 (3) | 147.9 |
O3W—H6W···O1vi | 0.84 | 1.81 | 2.634 (3) | 168.9 |
N2—H2···O5vii | 0.86 | 1.98 | 2.779 (3) | 155.0 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y, z+1; (iii) −x+1, −y+2, −z; (iv) x−1, y−1, z; (v) −x+1, −y+1, −z+1; (vi) −x+2, −y+2, −z+1; (vii) −x, −y+1, −z. |
Acknowledgements
The authors acknowledge Guang Dong Ocean University for supporting this work.
References
Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. Web of Science CrossRef IUCr Journals Google Scholar
Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
From the structuralpoint of view, 1H-benzimidazole-5,6-dicarboxylic acid possesses two nitrogen atoms of imidazole ring and four oxygen atoms of carboxylate groups, and might be used as versatile linker in constructing coordination polymers with abundant hydrogen bonds. And several coordination polymers fomed by this ligand have been reported recently:Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-kN3)copper(II) pentahydrate(Gao et al.,2008), Bis(1H-benzimidazole-5,6-dicarboxylato)bis[tetraaquadicobalt(II)] pentahydrate(Lo et al.,2007), Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-kN3) cobalt(II)pentahydrate(Song et al.,2009).In the present paper, we synthesized a novel coordination complex [Ni(C9H4N2O4)2(H2O)4].2H2O.2C3H7NO.
As shown in Figure 1, the NiII atom exhibits an octahedral coordination sphere, defined by two N atoms from two different 1H-benzimidazole-5,6-dicarboxylate ligands, and four water molecules. The equatorial plane is defined by O2w, O3w, O2wi and O3wi atoms, while N1 and N1i occupy the axial position (symmetry codes: i = 1 - x, 1 - y, 1 - z). Inter/intramolecular O—H···O and N—H···O hydrogen bonds between the carboxylate O atoms of 1H-benzimidazole-5,6-dicarboxylate and the coordinated water molecule lead to the structure more stable(Fig 2).The hydrogen bonds are in the normal range(Table 1).