organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,11-Di­aza-1,8-diazo­nia­cyclo­tetra­decane bis­­(pyridine-2-carboxyl­ate) dihydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 10 September 2009; accepted 15 September 2009; online 19 September 2009)

The asymmetric unit of the title compound, C10H26N42+·2C6H4NO2·2H2O, consists of half of a doubly protonated 1,4,8,11-tetra­azacyclo­tetra­decane (cyclam) dication, a pyridine-2-carboxyl­ate anion and a solvent water mol­ecule. The complete dication is generated by a crystallographic centre and adopts an endodentate conformation which may be influenced by intra­molecular N—H⋯N hydrogen bonding. The carboxyl­ate group of the anion appears to be delocalized on the basis of the C—O bond lengths [1.257 (2) and 1.250 (2) Å]. In the crystal structure, the components are linked by inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the crystal structures of [H2(cyclam)]X [X = (ClO4)2 or Cl2], see: Nave & Truter (1974[Nave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp 2351-2354.]); Kim et al. (2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, o2128.]). For the crystal structures of [H4(cyclam)]X·nH2O [X = Cl4, Br4, (ClO4)4, (SCN)4, (SO4)2 or (p-CH3C6H4SO3)4], see: Robinson et al. (1989[Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287-294.]); Subramanian & Zaworotko (1995[Subramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414-424.]). For the structure of pyridine-2-carboxylic acid, see: Hamazaki et al. (1998[Hamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54, IUC9800049.]). For the crystal structures of pyridine-2-carboxyl­ate compounds, see: Kim & Ha (2009a[Kim, N.-H. & Ha, K. (2009a). Acta Cryst. E65, o1415.],b[Kim, N.-H. & Ha, K. (2009b). Acta Cryst. E65, o2151.]).

[Scheme 1]

Experimental

Crystal data
  • C10H26N42+·2C6H4NO2·2H2O

  • Mr = 482.58

  • Monoclinic, P 21 /c

  • a = 10.2746 (8) Å

  • b = 12.0551 (9) Å

  • c = 10.3244 (8) Å

  • β = 93.104 (2)°

  • V = 1276.92 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.22 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS: Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 1.000

  • 9364 measured reflections

  • 3152 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.123

  • S = 1.02

  • 3152 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O3 0.92 2.02 2.932 (2) 170
N3—H32⋯N2 0.92 2.53 2.926 (3) 106
N3—H32⋯N2i 0.92 2.08 2.846 (3) 139
N3—H31⋯O1ii 0.92 1.86 2.749 (2) 161
N3—H31⋯N1ii 0.92 2.46 3.039 (2) 121
O3—H3A⋯O1iii 0.84 1.99 2.808 (2) 165
O3—H3B⋯O2iv 0.84 1.91 2.739 (2) 168
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z; (iii) x-1, y, z; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound, C10H26N42+.2C6H4NO2-.2H2O, (I), consists of half of a doubly protonated 1,4,8,11-tetraazacyclotetradecane (cyclam) dication, a pyridine-2-carboxylate anion and a solvent water molecule (Fig. 1). The macrocyclic dication contains two protonated N atoms and two secondary amine N atoms, and is located on a centre of inversion. The dication adopts an endodentate conformation with the N atoms oriented towards the centre of the macrocyclic cavity. The conformation may be stabilized by intramolecular N—H···N hydrogen bonding (Table 1 and Fig. 2). The N2—C9—C10—N3 torsion angle of 66.5 (2)° displays the gauche conformation for the group within the dication. A similar conformation is also observed in the structures cyclam (Robinson et al., 1989) and [H2(cyclam)]X [X = (ClO4)2 or Cl2] (Nave & Truter, 1974; Kim et al., 2009). Unlike cyclam and the dication, the tetracation, [H4(cyclam)]4+, adopts an exodentate conformation, in which all four N atoms are oriented away from the ring cavity, occupying positions as far away as possible from each other on the ring periphery (Robinson et al., 1989; Subramanian & Zaworotko, 1995). The protonated N—C bond lengths (N3—C10/C11: 1.482 (3)/1.487 (3) Å) are longer than unprotonated N—C bond lengths (N2—C8/C9: 1.468 (3)/1.459 (3) Å). The carboxylate group of the anion appears to be delocalized on the basis of the C—O bond lengths (C—O: 1.250 (2) and 1.257 (2) Å). The components of the crystal structure are linked by intermolecular N—H···O, N—H···N and O—H···O hydrogen bonds into one-dimensional chains along [001] (Table 1 and Fig. 2).

Related literature top

For the crystal structures of [H2(cyclam)]X [X = (ClO4)2 or Cl2], see: Nave & Truter (1974); Kim et al. (2009). For the crystal structures of [H4(cyclam)]X.nH2O [X = Cl4, Br4, (ClO4)4, (SCN)4, (SO4)2 or (p-CH3C6H4SO3)4], see: Robinson et al. (1989); Subramanian & Zaworotko (1995). For the structure of pyridine-2-carboxylic acid, see: Hamazaki et al. (1998). For the crystal structures of pyridine-2-carboxylate compounds, see: Kim & Ha (2009a,b).

Experimental top

A solution of 1,4,8,11-tetraazacyclotetradecane (0.100 g, 0.50 mmol) and pyridine-2-carboxylic acid (0.123 g, 1.00 mmol) in H2O (10 ml) was stirred for 3 h at 60 °C. The solvent was removed under vacuum and the residue was washed with acetone/ether, to give a white powder (0.221 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (CH) or 0.99 (CH2) Å, N—H = 0.92 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 40% probability level for non-H atoms [Symmetry code: (a) -x, -y, -z].
[Figure 2] Fig. 2. View of the unit-cell contents of (I). Hydrogen bonding interactions are drawn with dashed lines.
4,11-Diaza-1,8-diazoniacyclotetradecane bis(pyridine-2-carboxylate) dihydrate top
Crystal data top
C10H26N42+·2C6H4NO2·2(H2O)F(000) = 520
Mr = 482.58Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1456 reflections
a = 10.2746 (8) Åθ = 2.6–24.3°
b = 12.0551 (9) ŵ = 0.09 mm1
c = 10.3244 (8) ÅT = 200 K
β = 93.104 (2)°Block, colourless
V = 1276.92 (17) Å30.22 × 0.17 × 0.11 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
3152 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS: Sheldrick, 1996)
h = 1113
Tmin = 0.868, Tmax = 1.000k = 1615
9364 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0315P)2]
where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H26N42+·2C6H4NO2·2(H2O)V = 1276.92 (17) Å3
Mr = 482.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2746 (8) ŵ = 0.09 mm1
b = 12.0551 (9) ÅT = 200 K
c = 10.3244 (8) Å0.22 × 0.17 × 0.11 mm
β = 93.104 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3152 independent reflections
Absorption correction: multi-scan
(SADABS: Sheldrick, 1996)
1540 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 1.000Rint = 0.070
9364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3152 reflectionsΔρmin = 0.25 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84295 (15)0.05500 (12)0.30790 (13)0.0377 (4)
O20.71238 (16)0.00216 (13)0.46269 (15)0.0433 (5)
N10.67291 (18)0.21986 (15)0.23751 (17)0.0333 (5)
C10.5839 (2)0.29517 (19)0.1972 (2)0.0383 (6)
H10.61090.35380.14340.046*
C20.4558 (2)0.2926 (2)0.2290 (2)0.0434 (6)
H20.39600.34810.19840.052*
C30.4166 (2)0.2074 (2)0.3066 (2)0.0449 (7)
H30.32820.20170.32830.054*
C40.5066 (2)0.1306 (2)0.3524 (2)0.0384 (6)
H40.48180.07250.40820.046*
C50.6339 (2)0.13915 (18)0.31597 (19)0.0278 (5)
C60.7385 (2)0.05841 (18)0.3658 (2)0.0312 (5)
N20.14631 (18)0.09306 (16)0.05713 (17)0.0374 (5)
H210.14750.08110.14520.045*
N30.12754 (18)0.12813 (15)0.05896 (17)0.0360 (5)
H310.14560.11940.14470.043*
H320.05650.08450.04380.043*
C70.0412 (3)0.2719 (2)0.0986 (3)0.0510 (7)
H7A0.05610.35290.09460.061*
H7B0.04350.25030.19120.061*
C80.1501 (2)0.2132 (2)0.0340 (2)0.0446 (7)
H8A0.14240.22760.06050.054*
H8B0.23490.24300.06810.054*
C90.2570 (2)0.0350 (2)0.0057 (2)0.0459 (7)
H9A0.33880.05980.05190.055*
H9B0.26250.05250.08750.055*
C100.2406 (2)0.0876 (2)0.0229 (2)0.0485 (7)
H10A0.32060.12640.00150.058*
H10B0.22700.10420.11510.058*
C110.0922 (3)0.24601 (19)0.0372 (3)0.0487 (7)
H11A0.09280.26090.05710.058*
H11B0.15770.29490.07480.058*
O30.11622 (16)0.04470 (16)0.33220 (14)0.0609 (6)
H3A0.03510.04180.33850.091*
H3B0.15930.03140.40190.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (10)0.0450 (11)0.0374 (9)0.0095 (8)0.0064 (8)0.0074 (8)
O20.0425 (11)0.0484 (11)0.0389 (9)0.0014 (8)0.0010 (8)0.0163 (8)
N10.0335 (12)0.0338 (11)0.0327 (10)0.0028 (9)0.0026 (9)0.0033 (9)
C10.0439 (16)0.0346 (14)0.0361 (13)0.0048 (12)0.0003 (12)0.0055 (11)
C20.0398 (16)0.0423 (16)0.0476 (15)0.0118 (13)0.0042 (13)0.0027 (13)
C30.0305 (15)0.0573 (18)0.0473 (15)0.0062 (13)0.0050 (12)0.0018 (14)
C40.0377 (15)0.0464 (15)0.0314 (13)0.0027 (13)0.0038 (11)0.0052 (12)
C50.0289 (13)0.0303 (13)0.0239 (11)0.0024 (11)0.0012 (10)0.0007 (10)
C60.0365 (15)0.0284 (13)0.0281 (12)0.0041 (11)0.0045 (11)0.0015 (11)
N20.0427 (13)0.0406 (12)0.0296 (10)0.0016 (10)0.0071 (9)0.0003 (9)
N30.0392 (12)0.0361 (12)0.0333 (10)0.0082 (10)0.0086 (9)0.0035 (9)
C70.074 (2)0.0301 (14)0.0499 (16)0.0049 (14)0.0144 (16)0.0006 (12)
C80.0459 (17)0.0431 (16)0.0448 (15)0.0104 (13)0.0036 (13)0.0033 (13)
C90.0392 (16)0.0610 (18)0.0377 (14)0.0040 (14)0.0035 (12)0.0116 (13)
C100.0424 (16)0.0643 (19)0.0383 (14)0.0160 (14)0.0020 (13)0.0044 (13)
C110.0565 (18)0.0364 (16)0.0554 (17)0.0108 (13)0.0231 (15)0.0159 (13)
O30.0392 (11)0.1048 (16)0.0385 (10)0.0009 (11)0.0012 (9)0.0222 (10)
Geometric parameters (Å, º) top
O1—C61.257 (2)N3—H310.9200
O2—C61.250 (2)N3—H320.9200
N1—C11.339 (3)C7—C81.509 (3)
N1—C51.341 (2)C7—C11i1.511 (4)
C1—C21.374 (3)C7—H7A0.9900
C1—H10.9500C7—H7B0.9900
C2—C31.377 (3)C8—H8A0.9900
C2—H20.9500C8—H8B0.9900
C3—C41.374 (3)C9—C101.499 (3)
C3—H30.9500C9—H9A0.9900
C4—C51.385 (3)C9—H9B0.9900
C4—H40.9500C10—H10A0.9900
C5—C61.519 (3)C10—H10B0.9900
N2—C91.459 (3)C11—C7i1.511 (4)
N2—C81.468 (3)C11—H11A0.9900
N2—H210.9200C11—H11B0.9900
N3—C101.482 (3)O3—H3A0.8400
N3—C111.487 (3)O3—H3B0.8400
C1—N1—C5117.3 (2)C11i—C7—H7A108.9
N1—C1—C2123.9 (2)C8—C7—H7B108.9
N1—C1—H1118.1C11i—C7—H7B108.9
C2—C1—H1118.1H7A—C7—H7B107.7
C1—C2—C3118.0 (2)N2—C8—C7111.34 (19)
C1—C2—H2121.0N2—C8—H8A109.4
C3—C2—H2121.0C7—C8—H8A109.4
C4—C3—C2119.4 (2)N2—C8—H8B109.4
C4—C3—H3120.3C7—C8—H8B109.4
C2—C3—H3120.3H8A—C8—H8B108.0
C3—C4—C5119.0 (2)N2—C9—C10109.6 (2)
C3—C4—H4120.5N2—C9—H9A109.8
C5—C4—H4120.5C10—C9—H9A109.8
N1—C5—C4122.4 (2)N2—C9—H9B109.8
N1—C5—C6116.15 (19)C10—C9—H9B109.8
C4—C5—C6121.4 (2)H9A—C9—H9B108.2
O2—C6—O1126.1 (2)N3—C10—C9110.3 (2)
O2—C6—C5116.1 (2)N3—C10—H10A109.6
O1—C6—C5117.80 (19)C9—C10—H10A109.6
C9—N2—C8112.69 (19)N3—C10—H10B109.6
C9—N2—H21108.4C9—C10—H10B109.6
C8—N2—H21108.5H10A—C10—H10B108.1
C10—N3—C11114.79 (19)N3—C11—C7i110.9 (2)
C10—N3—H31108.6N3—C11—H11A109.5
C11—N3—H31108.6C7i—C11—H11A109.5
C10—N3—H32108.6N3—C11—H11B109.5
C11—N3—H32108.6C7i—C11—H11B109.5
H31—N3—H32107.5H11A—C11—H11B108.0
C8—C7—C11i113.3 (2)H3A—O3—H3B113.9
C8—C7—H7A108.9
C5—N1—C1—C21.6 (3)C4—C5—C6—O216.4 (3)
N1—C1—C2—C30.2 (4)N1—C5—C6—O117.0 (3)
C1—C2—C3—C42.0 (4)C4—C5—C6—O1164.4 (2)
C2—C3—C4—C51.9 (3)C9—N2—C8—C7174.9 (2)
C1—N1—C5—C41.7 (3)C11i—C7—C8—N268.7 (3)
C1—N1—C5—C6176.94 (19)C8—N2—C9—C10175.26 (19)
C3—C4—C5—N10.0 (3)C11—N3—C10—C9172.71 (19)
C3—C4—C5—C6178.6 (2)N2—C9—C10—N366.5 (2)
N1—C5—C6—O2162.19 (18)C10—N3—C11—C7i165.97 (19)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O30.922.022.932 (2)170
N3—H32···N20.922.532.926 (3)106
N3—H32···N2i0.922.082.846 (3)139
N3—H31···O1ii0.921.862.749 (2)161
N3—H31···N1ii0.922.463.039 (2)121
O3—H3A···O1iii0.841.992.808 (2)165
O3—H3B···O2iv0.841.912.739 (2)168
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H26N42+·2C6H4NO2·2(H2O)
Mr482.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.2746 (8), 12.0551 (9), 10.3244 (8)
β (°) 93.104 (2)
V3)1276.92 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS: Sheldrick, 1996)
Tmin, Tmax0.868, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9364, 3152, 1540
Rint0.070
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.123, 1.02
No. of reflections3152
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O30.922.022.932 (2)169.5
N3—H32···N20.922.532.926 (3)106.2
N3—H32···N2i0.922.082.846 (3)139.4
N3—H31···O1ii0.921.862.749 (2)160.5
N3—H31···N1ii0.922.463.039 (2)121.0
O3—H3A···O1iii0.841.992.808 (2)164.8
O3—H3B···O2iv0.841.912.739 (2)167.9
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54, IUC9800049.  CrossRef IUCr Journals Google Scholar
First citationKim, N.-H. & Ha, K. (2009a). Acta Cryst. E65, o1415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, N.-H. & Ha, K. (2009b). Acta Cryst. E65, o2151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, o2128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp 2351–2354.  Google Scholar
First citationRobinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414–424.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds