organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1H-Imidazol-1-yl)propane­nitrile

aUniversität Rostock, Institut für Chemie, Abteilung Anorganische Chemie/Festkörper­chemie, Albert-Einstein-Strasse 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

(Received 18 August 2009; accepted 3 September 2009; online 16 September 2009)

The title compound, C6H7N3, has an ethyl­ene group connecting an imidazole ring and a –CN group. These groups are in a staggered conformation. The shortest inter­molecular contact is found between the imidazole N atom and a –CH2– group of a neighboring mol­ecule.

Related literature

For background and applications of ionic liquids, see: Hayashi et al. (2006[Hayashi, S., Saha, S. & Hamaguchi, H. (2006). IEEE Trans. Magn. 42, 12-14.]); Kozlova et al. (2009a[Kozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009a). J. Chem. Eng. Data, 54, 1524-1528.],b[Kozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009b). J. Chem. Thermodyn. 41, 330-333.]); Lombardo et al. (2007[Lombardo, M., Pasi, F., Trombini, C., Seddon, K. R. & Pittner, W. R. (2007). Green Chem. 9, 321-322.]); Macaev et al. (2007[Macaev, F., Gavrilov, K., Muntyanu, V., Styngach, E., Vlad, L., Bets, L., Pogrebnoi, S. & Barba, A. (2007). Chem. Nat. Compd. 43, 136-139.]); Sawa & Okamura (1969[Sawa, N. & Okamura, S. (1969). Nippon Kagaku Zasshi, 90, 704-707.]); Scheers et al. (2008[Scheers, J., Johansson, P. & Jacobsson, P. (2008). J. Electrochem. Soc. 155, A628-A634.]); Visser et al. (2001[Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, J. H. Jr & Rogers, R. D. (2001). Chem. Commun. pp. 135-136.]); Wang et al. (2003[Wang, P., Zakeeruddin, S. M., Comte, P., Exnar, I. & Grätzel, M. (2003). J. Am. Chem. Soc. 125, 1166-1167.]); Wasserscheid & Keim (2000[Wasserscheid, P. & Keim, W. (2000). Angew. Chem. Int. Ed. 39, 3772-3789.]); Xu et al. (2007[Xu, J.-M., Qian, C., Liu, B.-K., Wu, Q. & Lin, X.-F. (2007). Tetrahedron, 63, 986-990.]); Yamauchi & Masui (1976[Yamauchi, M. & Masui, M. (1976). Chem. Pharm. Bull. 24, 1480-1484.]); Yang et al. (2006[Yang, L., Xu, L.-W., Zhou, W., Li, L. & Xia, C.-G. (2006). Tetrahedron Lett. 47, 7723-7726.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N3

  • Mr = 121.15

  • Monoclinic, P 21 /c

  • a = 7.2712 (3) Å

  • b = 5.5917 (2) Å

  • c = 15.4625 (5) Å

  • β = 100.979 (1)°

  • V = 617.17 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.30 mm

Data collection
  • Bruker–Nonius X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.975

  • 11604 measured reflections

  • 1542 independent reflections

  • 1456 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.04

  • 1542 reflections

  • 111 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N2i 0.97 (1) 2.66 (1) 3.366 (1) 135.7 (9)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: ct.exe (Köckerling, 1996[Köckerling, M. (1996). ct.exe. Universität Rostock, Germany.]).

Supporting information


Comment top

Ionic Liquids (ILs) are more and more attracting remarkable attention as new solvents and reaction media for organic and inorganic synthesis and catalysis in order to replace volatile organic solvents (Wasserscheid & Keim, 2000). Imidazolium based ILs have emerged as leading candidates since they have very low vapor pressures, are moisture and air stable, and are highly solvating for both molecular and ionic species. Furthermore, ILs are finding use in separation processes (Visser et al., 2001), in battery applications (Scheers et al., 2008), as electrolytes in solar cells (Wang et al., 2003), or as part of metal catalysts and magnetic liquids (Lombardo et al., 2007; Hayashi et al., 2006; Kozlova et al., 2009a; Kozlova et al., 2009b). Ionic Liquids and imidazole compounds incorporating nitrile functionalities have shown applications in heterocyclic and terpene chemistry (Macaev et al., 2007; Yamauchi & Masui, 1976), in Michael addition or aza-Michael reactions (Xu et al., 2007; Yang et al., 2006).

In this context we present the molecular and single-crystal structure of 3-(1H-imidazol-1-yl)propanenitrile, an important precursor of nitrile functionalized ILs. Although all other sources report this compound to be a liquid at room temperature, there is one single indication in the literature that it is a solid melting at 33–35 °C (Sawa & Okamura, 1969). A freshly distilled sample crystallizes spontaneously within days, forming big block-shaped colourless crystals, which are barely deliquescent and melting at 37 °C.

All the bond lengths are within the expected ranges. The molecular structure of the title compound is shown in Figure 1. The C6–N3 bond length of 1.141 (1) Å indicates the triple-bond nitrile character. This nitrile group is connected through an ethylene group with the planar imidazolyl ring. The ethylene group has a staggered conformation with an N1–C4–C5–C6 torsion angle of -65.43 (9)°.

The shortest intermolecular contacts are found between one of the H atoms bonded at C5 and the N2 atom of the symmetry equivalent neighboring molecule. The H5A···N2# distance measures 2.66 (1) Å, the corresponding C5···N2# distance 3.366 (1) Å, and the C5–H5a···N2# angle 135.6° (symmetry code #: x, 1/2-y, z+1/2). Therefore the contact can be considered as a weak hydrogen bond. Figure 2 shows the orientation of two molecules, which are attached through this weak hydrogen bond.

In the crystal the molecules are arranged in rows, such that this weak hydrogen bond is oriented approximately parallel to the crystallographic c direction. Due to the c glide plane, every second row, stacked along a is shifted by c/2. The packing diagram, Figure 3, shows this assembly.

Related literature top

For background and applications of ionic liquids, see: Hayashi et al. (2006); Kozlova et al. (2009a,b); Lombardo et al. (2007); Macaev et al. (2007); Sawa & Okamura (1969); Scheers et al. (2008); Visser et al. (2001); Wang et al. (2003); Wasserscheid & Keim (2000); Xu et al. (2007); Yamauchi & Masui (1976); Yang et al. (2006).

Experimental top

1H-Imidazole (50.0 g, 0.7 mol) and acrylonitrile (117.0 g, 2.2 mol) were refluxed in 150 ml of ethanol overnight. Excess acrylonitrile and the solvent were evaporated and the residue was distilled in vacuum, yielding a colourless supercooled liquid, which crystallized at room temperature after several days. Yield: 75.0 g (84%), mp 37 °C.

Refinement top

The positions of the hydrogen atoms were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: ct.exe (Köckerling, 1996).

Figures top
[Figure 1] Fig. 1. Molecular structure of 3-(1H-imidazol-1-yl)propanenitrile with atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Two neighboring C6H7N3 molecules with the short N2···H(C5) contact.
[Figure 3] Fig. 3. Packing diagram of 3-(1H-imidazol-1-yl)propanenitrile in a view down the crystallographic b direction.
3-(1H-Imidazol-1-yl)propanenitrile top
Crystal data top
C6H7N3Dx = 1.304 Mg m3
Mr = 121.15Melting point: 310 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2712 (3) ÅCell parameters from 8906 reflections
b = 5.5917 (2) Åθ = 2.7–28.3°
c = 15.4625 (5) ŵ = 0.09 mm1
β = 100.979 (1)°T = 173 K
V = 617.17 (4) Å3Block, colourless
Z = 40.45 × 0.40 × 0.30 mm
F(000) = 256
Data collection top
Bruker–Nonius X8 Apex
diffractometer
1542 independent reflections
Radiation source: fine-focus sealed tube1456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.3°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.946, Tmax = 0.975k = 77
11604 measured reflectionsl = 2016
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.1206P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1542 reflectionsΔρmax = 0.27 e Å3
111 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.064 (15)
Crystal data top
C6H7N3V = 617.17 (4) Å3
Mr = 121.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2712 (3) ŵ = 0.09 mm1
b = 5.5917 (2) ÅT = 173 K
c = 15.4625 (5) Å0.45 × 0.40 × 0.30 mm
β = 100.979 (1)°
Data collection top
Bruker–Nonius X8 Apex
diffractometer
1542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1456 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.975Rint = 0.018
11604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086All H-atom parameters refined
S = 1.04Δρmax = 0.27 e Å3
1542 reflectionsΔρmin = 0.16 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76561 (9)0.2518 (1)0.30688 (4)0.0207 (2)
C10.6541 (1)0.1964 (2)0.22892 (5)0.0254 (2)
H10.579 (2)0.053 (2)0.2217 (7)0.033 (3)*
N20.6623 (1)0.3580 (1)0.16800 (4)0.0302 (2)
C20.7866 (1)0.5266 (2)0.20919 (6)0.0281 (2)
H20.817 (2)0.670 (2)0.1771 (8)0.037 (3)*
C30.8519 (1)0.4648 (1)0.29465 (5)0.0249 (2)
H30.944 (2)0.535 (2)0.3408 (8)0.035 (3)*
C40.7876 (1)0.1115 (1)0.38757 (5)0.0239 (2)
H4A0.919 (2)0.109 (2)0.4147 (7)0.030 (3)*
H4B0.744 (2)0.051 (2)0.3700 (7)0.031 (3)*
C50.6708 (1)0.2069 (2)0.45232 (5)0.0254 (2)
H5A0.683 (2)0.100 (2)0.5022 (8)0.037 (3)*
H5B0.538 (2)0.217 (2)0.4243 (7)0.035 (3)*
C60.7298 (1)0.4436 (2)0.48692 (5)0.0244 (2)
N30.7779 (1)0.6275 (1)0.51425 (5)0.0333 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0242 (3)0.0212 (3)0.0176 (3)0.0012 (2)0.0061 (2)0.0007 (2)
C10.0293 (4)0.0279 (4)0.0194 (4)0.0001 (3)0.0057 (3)0.0026 (3)
N20.0345 (4)0.0371 (4)0.0196 (3)0.0033 (3)0.0064 (3)0.0029 (3)
C20.0290 (4)0.0307 (4)0.0271 (4)0.0027 (3)0.0113 (3)0.0075 (3)
C30.0246 (4)0.0249 (4)0.0257 (4)0.0015 (3)0.0065 (3)0.0023 (3)
C40.0318 (4)0.0213 (4)0.0188 (3)0.0026 (3)0.0058 (3)0.0025 (3)
C50.0321 (4)0.0265 (4)0.0190 (4)0.0056 (3)0.0084 (3)0.0011 (3)
C60.0265 (4)0.0288 (4)0.0186 (3)0.0011 (3)0.0060 (3)0.0002 (3)
N30.0386 (4)0.0303 (4)0.0313 (4)0.0002 (3)0.0078 (3)0.0047 (3)
Geometric parameters (Å, º) top
N1—C11.354 (1)C6—N31.141 (1)
N1—C31.376 (1)C1—H10.97 (1)
N1—C41.4565 (9)C2—H20.99 (1)
C1—N21.315 (1)C3—H30.97 (1)
N2—C21.376 (1)C4—H4A0.97 (1)
C2—C31.361 (1)C4—H4B0.99 (1)
C4—C51.527 (1)C5—H5A0.97 (1)
C5—C61.461 (1)C5—H5B0.98 (1)
C1—N1—C3106.68 (6)H2—C2—N2120.9 (7)
C1—N1—C4126.06 (7)H3—C3—C2132.8 (7)
C3—N1—C4127.27 (7)H3—C3—N1121.4 (7)
N2—C1—N1112.30 (7)H4A—C4—H4B110.4 (9)
C1—N2—C2104.76 (7)H4A—C4—N1108.5 (7)
C3—C2—N2110.64 (7)H4B—C4—N1106.5 (7)
C2—C3—N1105.63 (7)H4A—C4—C5110.2 (7)
N1—C4—C5112.92 (6)H4B—C4—C5108.2 (7)
C6—C5—C4113.28 (7)H5A—C5—H5B109 (1)
N3—C6—C5179.24 (9)H5A—C5—C6107.0 (7)
H1—C1—N2126.2 (7)H5B—C5—C6107.9 (7)
H1—C1—N1121.5 (7)H5A—C5—C4109.2 (7)
H2—C2—C3128.4 (7)H5B—C5—C4110.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N2i0.97 (1)2.66 (1)3.366 (1)135.7 (9)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H7N3
Mr121.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.2712 (3), 5.5917 (2), 15.4625 (5)
β (°) 100.979 (1)
V3)617.17 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerBruker–Nonius X8 Apex
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.946, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
11604, 1542, 1456
Rint0.018
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.04
No. of reflections1542
No. of parameters111
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), ct.exe (Köckerling, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N2i0.97 (1)2.66 (1)3.366 (1)135.7 (9)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Dr Helmut Reinke (University of Rostock/Germany, Institute of Chemistry) for maintaining the X-ray equipment. Support from the DFG (priority program SPP 1191-Ionic Liquids, KO-1616/4-1 and 1616/4-2) is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHayashi, S., Saha, S. & Hamaguchi, H. (2006). IEEE Trans. Magn. 42, 12–14.  Web of Science CrossRef CAS Google Scholar
First citationKöckerling, M. (1996). ct.exe. Universität Rostock, Germany.  Google Scholar
First citationKozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009a). J. Chem. Eng. Data, 54, 1524–1528.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009b). J. Chem. Thermodyn. 41, 330–333.  Web of Science CrossRef CAS Google Scholar
First citationLombardo, M., Pasi, F., Trombini, C., Seddon, K. R. & Pittner, W. R. (2007). Green Chem. 9, 321–322.  Web of Science CrossRef CAS Google Scholar
First citationMacaev, F., Gavrilov, K., Muntyanu, V., Styngach, E., Vlad, L., Bets, L., Pogrebnoi, S. & Barba, A. (2007). Chem. Nat. Compd. 43, 136–139.  Web of Science CrossRef CAS Google Scholar
First citationSawa, N. & Okamura, S. (1969). Nippon Kagaku Zasshi, 90, 704–707.  CrossRef CAS Google Scholar
First citationScheers, J., Johansson, P. & Jacobsson, P. (2008). J. Electrochem. Soc. 155, A628–A634.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVisser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, J. H. Jr & Rogers, R. D. (2001). Chem. Commun. pp. 135–136.  Web of Science CrossRef Google Scholar
First citationWang, P., Zakeeruddin, S. M., Comte, P., Exnar, I. & Grätzel, M. (2003). J. Am. Chem. Soc. 125, 1166–1167.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWasserscheid, P. & Keim, W. (2000). Angew. Chem. Int. Ed. 39, 3772–3789.  Web of Science CrossRef CAS Google Scholar
First citationXu, J.-M., Qian, C., Liu, B.-K., Wu, Q. & Lin, X.-F. (2007). Tetrahedron, 63, 986–990.  Web of Science CrossRef CAS Google Scholar
First citationYamauchi, M. & Masui, M. (1976). Chem. Pharm. Bull. 24, 1480–1484.  CrossRef CAS Google Scholar
First citationYang, L., Xu, L.-W., Zhou, W., Li, L. & Xia, C.-G. (2006). Tetrahedron Lett. 47, 7723–7726.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds