metal-organic compounds
[1,3-Bis(2-ethoxyphenyl)triazenido]bromidomercury(II)
aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and bYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: attar_jafar@yahoo.com
To the central atom of the title compound, [HgBr(C16H18N3O2)], is attached one bromide ion and a 1,3-bis(2-ethoxyphenyl)triazenide ligand through one O and two N atoms, forming a distorted square-planar geometry around the HgII atom. The mononuclear complexes are linked into centrosymmetric dimers by non-classical intermolecular C—H⋯N hydrogen bonds and by weak Hg–η3-arene π-interactions [mean distance = 3.434 (3) Å]. The resulting dimeric units are assembled into zigzag chains by translation along the crystallographic c axis through secondary C—H⋯π edge-to-face benzene ring interactions.
Related literature
For aryl ); Hörner et al. (2002, 2004, 2006). For the different coordination modes of the triazenide ligand, see: Moore & Robinson (1986). For the synthesis and molecular structure of similar structures with cyano, methoxy and ethoxy groups, see: Melardi et al. (2008); Rofouei et al. (2006); Rofouei, Melardi, Salemi et al. (2009). For the synthesis and crystal structures of HgII complexes with [1,3-bis(2-methoxyphenyl)]triazene by using HgCl2, HgBr2, Hg(CH3COO)2 and Hg(SCN)2 salts as starting materials, see: Melardi et al. (2007); Hematyar & Rofouei (2008); Rofouei, Hematyar et al. (2009). For the synthesis and crystal structures of cadmium(II) and silver(I) complexes with 1,3-bis(2-methoxyphenyl)triazene, see: Rofouei, Melardi, Khalili Ghaydari et al. (2009) and Payehghadr et al. (2007), respectively. For the synthesis and characterization of an isomorphous HgII structure with [1,3-bis(2-ethoxyphenyl)]triazene by using HgCl2 instead of HgBr2, see: Melardi et al. (2009).
their structural properties and metal complexes see: Vrieze & Van Koten (1987Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809038732/om2271sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038732/om2271Isup2.hkl
A methanol solution of 1,3-bis(2-ethoxyphenyl)triazene (0.2853 g, 1 mmol) was added to a methanol solution of mercury(II) bromide (0.3604 g, 1 mmol). After mixing for 1 h at room temperature, an orange solid was readily precipitated out. It was then filtered off, washed with methanol and dried in vacuum. The orange crude material was dissolved in 10 ml of THF, and placed in a freezer without covering. After two weeks beautiful orange and air-stable crystals of the title complex were obtained by slow evaporation of the solvent.
Positions of the H(C) were calculated from geometry with C—H = 0.95 - 0.99 Å. All hydrogen atoms were refined by use of a riding model with Uiso(H) parameters equal to 1.5 Ueq(C) for methyl groups and to 1.2 Ueq(C) for other carbon atoms where Ueq(C) are the equivalent isotropic thermal parameters of the atoms to which the corresponding H atoms are bonded.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[HgBr(C16H18N3O2)] | F(000) = 1064 |
Mr = 564.83 | Dx = 2.217 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4844 reflections |
a = 10.2359 (7) Å | θ = 2.3–29.5° |
b = 7.4659 (5) Å | µ = 11.47 mm−1 |
c = 22.4123 (14) Å | T = 100 K |
β = 98.860 (6)° | Plate, orange |
V = 1692.32 (19) Å3 | 0.28 × 0.12 × 0.03 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 4943 independent reflections |
Radiation source: fine-focus sealed tube | 4081 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scans | θmax = 30.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −14→14 |
Tmin = 0.221, Tmax = 0.709 | k = −10→10 |
20759 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.01P)2] where P = (Fo2 + 2Fc2)/3 |
4943 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 1.33 e Å−3 |
0 restraints | Δρmin = −1.43 e Å−3 |
[HgBr(C16H18N3O2)] | V = 1692.32 (19) Å3 |
Mr = 564.83 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.2359 (7) Å | µ = 11.47 mm−1 |
b = 7.4659 (5) Å | T = 100 K |
c = 22.4123 (14) Å | 0.28 × 0.12 × 0.03 mm |
β = 98.860 (6)° |
Bruker APEXII CCD diffractometer | 4943 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 4081 reflections with I > 2σ(I) |
Tmin = 0.221, Tmax = 0.709 | Rint = 0.061 |
20759 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.00 | Δρmax = 1.33 e Å−3 |
4943 reflections | Δρmin = −1.43 e Å−3 |
210 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The maximum and minimum difference map peaks are within 1.21 Å of Hg1. |
x | y | z | Uiso*/Ueq | ||
Hg1 | −0.152069 (14) | 0.681795 (19) | 0.053806 (7) | 0.01739 (5) | |
Br1 | −0.36007 (4) | 0.63210 (6) | 0.08813 (2) | 0.02803 (10) | |
O1 | −0.1764 (2) | 0.8602 (3) | −0.05325 (12) | 0.0160 (5) | |
O2 | 0.0190 (3) | 0.4368 (3) | 0.20087 (13) | 0.0175 (6) | |
N1 | 0.0246 (3) | 0.7115 (4) | 0.01922 (15) | 0.0148 (6) | |
N2 | 0.1262 (3) | 0.6390 (4) | 0.05569 (15) | 0.0140 (6) | |
N3 | 0.0888 (3) | 0.5769 (4) | 0.10309 (15) | 0.0147 (6) | |
C1 | −0.0555 (3) | 0.8727 (5) | −0.07197 (17) | 0.0127 (7) | |
C2 | 0.0503 (4) | 0.7918 (4) | −0.03385 (17) | 0.0133 (7) | |
C3 | 0.1769 (4) | 0.7992 (5) | −0.05036 (18) | 0.0170 (8) | |
H3 | 0.2493 | 0.7441 | −0.0254 | 0.020* | |
C4 | 0.1972 (4) | 0.8862 (5) | −0.1028 (2) | 0.0202 (8) | |
H4 | 0.2834 | 0.8906 | −0.1136 | 0.024* | |
C5 | 0.0928 (4) | 0.9665 (5) | −0.13943 (18) | 0.0182 (8) | |
H5 | 0.1073 | 1.0270 | −0.1751 | 0.022* | |
C6 | −0.0331 (4) | 0.9589 (5) | −0.12414 (18) | 0.0168 (8) | |
H6 | −0.1048 | 1.0134 | −0.1497 | 0.020* | |
C7 | 0.1494 (3) | 0.4203 (5) | 0.19634 (18) | 0.0143 (7) | |
C8 | 0.1896 (3) | 0.4974 (5) | 0.14479 (17) | 0.0136 (7) | |
C9 | 0.3235 (4) | 0.4931 (5) | 0.13872 (18) | 0.0172 (8) | |
H9 | 0.3514 | 0.5475 | 0.1045 | 0.021* | |
C10 | 0.4158 (4) | 0.4114 (5) | 0.18149 (19) | 0.0187 (8) | |
H10 | 0.5066 | 0.4105 | 0.1770 | 0.022* | |
C11 | 0.3744 (4) | 0.3301 (5) | 0.23141 (19) | 0.0183 (8) | |
H11 | 0.4371 | 0.2716 | 0.2606 | 0.022* | |
C12 | 0.2414 (4) | 0.3343 (5) | 0.23868 (19) | 0.0173 (8) | |
H12 | 0.2139 | 0.2781 | 0.2727 | 0.021* | |
C13 | −0.2862 (4) | 0.9515 (5) | −0.08961 (18) | 0.0174 (8) | |
H13A | −0.3002 | 0.9034 | −0.1313 | 0.021* | |
H13B | −0.2678 | 1.0814 | −0.0914 | 0.021* | |
C14 | −0.4070 (4) | 0.9196 (6) | −0.0602 (2) | 0.0233 (9) | |
H14A | −0.4809 | 0.9907 | −0.0809 | 0.035* | |
H14B | −0.3885 | 0.9552 | −0.0177 | 0.035* | |
H14C | −0.4303 | 0.7922 | −0.0630 | 0.035* | |
C15 | −0.0256 (4) | 0.3651 (5) | 0.25327 (19) | 0.0213 (8) | |
H15A | 0.0251 | 0.4179 | 0.2902 | 0.026* | |
H15B | −0.0132 | 0.2336 | 0.2548 | 0.026* | |
C16 | −0.1692 (4) | 0.4104 (6) | 0.2491 (2) | 0.0272 (10) | |
H16A | −0.2048 | 0.3543 | 0.2828 | 0.041* | |
H16B | −0.2173 | 0.3659 | 0.2108 | 0.041* | |
H16C | −0.1795 | 0.5406 | 0.2511 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.01495 (7) | 0.01991 (8) | 0.01826 (8) | −0.00083 (5) | 0.00561 (5) | 0.00169 (6) |
Br1 | 0.01972 (19) | 0.0300 (2) | 0.0374 (3) | 0.00079 (16) | 0.01402 (18) | 0.00757 (19) |
O1 | 0.0130 (12) | 0.0221 (13) | 0.0132 (14) | 0.0018 (10) | 0.0027 (10) | 0.0021 (11) |
O2 | 0.0165 (13) | 0.0211 (13) | 0.0156 (14) | −0.0003 (10) | 0.0042 (11) | 0.0040 (11) |
N1 | 0.0134 (14) | 0.0167 (15) | 0.0134 (16) | 0.0014 (11) | −0.0006 (12) | 0.0011 (12) |
N2 | 0.0169 (15) | 0.0129 (14) | 0.0117 (16) | −0.0016 (11) | 0.0006 (12) | −0.0013 (12) |
N3 | 0.0156 (15) | 0.0143 (14) | 0.0138 (16) | −0.0030 (11) | 0.0010 (12) | 0.0007 (12) |
C1 | 0.0149 (17) | 0.0127 (15) | 0.0103 (17) | −0.0005 (13) | 0.0017 (14) | −0.0027 (14) |
C2 | 0.0158 (17) | 0.0123 (16) | 0.0123 (18) | −0.0007 (12) | 0.0043 (14) | −0.0009 (13) |
C3 | 0.0142 (17) | 0.0181 (18) | 0.019 (2) | −0.0015 (13) | 0.0032 (15) | 0.0000 (15) |
C4 | 0.0159 (18) | 0.0242 (19) | 0.022 (2) | −0.0039 (15) | 0.0085 (16) | −0.0017 (17) |
C5 | 0.0197 (19) | 0.0212 (19) | 0.0149 (19) | −0.0034 (15) | 0.0061 (15) | 0.0005 (16) |
C6 | 0.0183 (18) | 0.0148 (17) | 0.017 (2) | −0.0002 (14) | 0.0017 (15) | 0.0008 (15) |
C7 | 0.0141 (17) | 0.0119 (16) | 0.0168 (19) | 0.0004 (13) | 0.0028 (14) | 0.0005 (14) |
C8 | 0.0170 (17) | 0.0123 (16) | 0.0110 (18) | 0.0001 (13) | 0.0007 (14) | −0.0020 (14) |
C9 | 0.0208 (19) | 0.0146 (17) | 0.017 (2) | −0.0034 (14) | 0.0041 (15) | −0.0011 (15) |
C10 | 0.0171 (18) | 0.0187 (19) | 0.019 (2) | −0.0005 (14) | −0.0001 (15) | −0.0015 (16) |
C11 | 0.0183 (18) | 0.0173 (17) | 0.017 (2) | 0.0004 (14) | −0.0035 (15) | −0.0022 (16) |
C12 | 0.0215 (18) | 0.0131 (17) | 0.0167 (19) | −0.0001 (14) | 0.0018 (15) | −0.0004 (15) |
C13 | 0.0146 (17) | 0.0189 (18) | 0.017 (2) | −0.0005 (14) | −0.0018 (15) | 0.0005 (16) |
C14 | 0.0162 (19) | 0.030 (2) | 0.023 (2) | 0.0012 (16) | 0.0029 (16) | −0.0019 (18) |
C15 | 0.029 (2) | 0.0205 (19) | 0.015 (2) | 0.0008 (16) | 0.0069 (17) | 0.0025 (16) |
C16 | 0.029 (2) | 0.029 (2) | 0.028 (3) | 0.0044 (17) | 0.0154 (19) | 0.0074 (19) |
Hg1—N1 | 2.086 (3) | C7—C8 | 1.408 (5) |
Hg1—Br1 | 2.4014 (4) | C8—C9 | 1.398 (5) |
Hg1—N3 | 2.660 (3) | C9—C10 | 1.380 (5) |
O1—C1 | 1.370 (4) | C9—H9 | 0.9500 |
O1—C13 | 1.452 (4) | C10—C11 | 1.395 (6) |
O2—C7 | 1.359 (4) | C10—H10 | 0.9500 |
O2—C15 | 1.428 (5) | C11—C12 | 1.396 (5) |
N1—N2 | 1.334 (4) | C11—H11 | 0.9500 |
N1—C2 | 1.393 (5) | C12—H12 | 0.9500 |
N2—N3 | 1.271 (4) | C13—C14 | 1.507 (5) |
N3—C8 | 1.412 (5) | C13—H13A | 0.9900 |
C1—C6 | 1.384 (5) | C13—H13B | 0.9900 |
C1—C2 | 1.408 (5) | C14—H14A | 0.9800 |
C2—C3 | 1.403 (5) | C14—H14B | 0.9800 |
C3—C4 | 1.386 (6) | C14—H14C | 0.9800 |
C3—H3 | 0.9500 | C15—C16 | 1.497 (6) |
C4—C5 | 1.381 (6) | C15—H15A | 0.9900 |
C4—H4 | 0.9500 | C15—H15B | 0.9900 |
C5—C6 | 1.385 (5) | C16—H16A | 0.9800 |
C5—H5 | 0.9500 | C16—H16B | 0.9800 |
C6—H6 | 0.9500 | C16—H16C | 0.9800 |
C7—C12 | 1.387 (5) | ||
N1—Hg1—Br1 | 175.94 (9) | C10—C9—C8 | 121.3 (4) |
N1—Hg1—N3 | 52.01 (11) | C10—C9—H9 | 119.4 |
Br1—Hg1—N3 | 129.22 (7) | C8—C9—H9 | 119.4 |
C1—O1—C13 | 117.0 (3) | C9—C10—C11 | 119.3 (4) |
C7—O2—C15 | 118.0 (3) | C9—C10—H10 | 120.4 |
N2—N1—C2 | 117.8 (3) | C11—C10—H10 | 120.4 |
N2—N1—Hg1 | 111.6 (2) | C10—C11—C12 | 120.4 (4) |
C2—N1—Hg1 | 130.7 (2) | C10—C11—H11 | 119.8 |
N3—N2—N1 | 110.7 (3) | C12—C11—H11 | 119.8 |
N2—N3—C8 | 115.1 (3) | C7—C12—C11 | 120.1 (4) |
N2—N3—Hg1 | 85.7 (2) | C7—C12—H12 | 119.9 |
C8—N3—Hg1 | 159.2 (3) | C11—C12—H12 | 119.9 |
O1—C1—C6 | 124.4 (3) | O1—C13—C14 | 107.3 (3) |
O1—C1—C2 | 115.6 (3) | O1—C13—H13A | 110.3 |
C6—C1—C2 | 120.0 (3) | C14—C13—H13A | 110.3 |
N1—C2—C3 | 123.1 (3) | O1—C13—H13B | 110.3 |
N1—C2—C1 | 118.3 (3) | C14—C13—H13B | 110.3 |
C3—C2—C1 | 118.6 (3) | H13A—C13—H13B | 108.5 |
C4—C3—C2 | 120.5 (4) | C13—C14—H14A | 109.5 |
C4—C3—H3 | 119.7 | C13—C14—H14B | 109.5 |
C2—C3—H3 | 119.7 | H14A—C14—H14B | 109.5 |
C5—C4—C3 | 120.3 (4) | C13—C14—H14C | 109.5 |
C5—C4—H4 | 119.9 | H14A—C14—H14C | 109.5 |
C3—C4—H4 | 119.9 | H14B—C14—H14C | 109.5 |
C4—C5—C6 | 120.0 (4) | O2—C15—C16 | 107.5 (3) |
C4—C5—H5 | 120.0 | O2—C15—H15A | 110.2 |
C6—C5—H5 | 120.0 | C16—C15—H15A | 110.2 |
C1—C6—C5 | 120.6 (4) | O2—C15—H15B | 110.2 |
C1—C6—H6 | 119.7 | C16—C15—H15B | 110.2 |
C5—C6—H6 | 119.7 | H15A—C15—H15B | 108.5 |
O2—C7—C12 | 124.2 (4) | C15—C16—H16A | 109.5 |
O2—C7—C8 | 116.0 (3) | C15—C16—H16B | 109.5 |
C12—C7—C8 | 119.8 (3) | H16A—C16—H16B | 109.5 |
C9—C8—C7 | 119.0 (3) | C15—C16—H16C | 109.5 |
C9—C8—N3 | 124.9 (3) | H16A—C16—H16C | 109.5 |
C7—C8—N3 | 116.0 (3) | H16B—C16—H16C | 109.5 |
N3—Hg1—N1—N2 | 1.4 (2) | C3—C4—C5—C6 | −0.6 (6) |
N3—Hg1—N1—C2 | −178.7 (4) | O1—C1—C6—C5 | 179.5 (3) |
C2—N1—N2—N3 | 177.6 (3) | C2—C1—C6—C5 | 0.1 (5) |
Hg1—N1—N2—N3 | −2.5 (3) | C4—C5—C6—C1 | 0.6 (6) |
N1—N2—N3—C8 | −179.9 (3) | C15—O2—C7—C12 | 1.7 (5) |
N1—N2—N3—Hg1 | 1.8 (3) | C15—O2—C7—C8 | −178.3 (3) |
N1—Hg1—N3—N2 | −1.37 (19) | O2—C7—C8—C9 | 176.9 (3) |
Br1—Hg1—N3—N2 | 173.68 (16) | C12—C7—C8—C9 | −3.1 (5) |
N1—Hg1—N3—C8 | −177.1 (7) | O2—C7—C8—N3 | −2.1 (5) |
Br1—Hg1—N3—C8 | −2.1 (7) | C12—C7—C8—N3 | 177.9 (3) |
C13—O1—C1—C6 | −3.0 (5) | N2—N3—C8—C9 | 3.9 (5) |
C13—O1—C1—C2 | 176.4 (3) | Hg1—N3—C8—C9 | 179.2 (5) |
N2—N1—C2—C3 | 0.1 (5) | N2—N3—C8—C7 | −177.2 (3) |
Hg1—N1—C2—C3 | −179.7 (3) | Hg1—N3—C8—C7 | −1.9 (8) |
N2—N1—C2—C1 | −178.4 (3) | C7—C8—C9—C10 | 1.5 (5) |
Hg1—N1—C2—C1 | 1.7 (5) | N3—C8—C9—C10 | −179.6 (3) |
O1—C1—C2—N1 | −1.5 (5) | C8—C9—C10—C11 | 0.6 (6) |
C6—C1—C2—N1 | 177.9 (3) | C9—C10—C11—C12 | −1.2 (6) |
O1—C1—C2—C3 | 179.8 (3) | O2—C7—C12—C11 | −177.5 (3) |
C6—C1—C2—C3 | −0.7 (5) | C8—C7—C12—C11 | 2.5 (5) |
N1—C2—C3—C4 | −177.8 (3) | C10—C11—C12—C7 | −0.3 (6) |
C1—C2—C3—C4 | 0.7 (5) | C1—O1—C13—C14 | −179.7 (3) |
C2—C3—C4—C5 | −0.1 (6) | C7—O2—C15—C16 | 176.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13B···N2i | 0.99 | 2.60 | 3.496 (5) | 151 |
C12—H12···Cg1ii | 0.95 | 2.85 | 3.559 (4) | 132 |
C13—H13A···Cg1iii | 0.99 | 2.72 | 3.523 (4) | 139 |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [HgBr(C16H18N3O2)] |
Mr | 564.83 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 10.2359 (7), 7.4659 (5), 22.4123 (14) |
β (°) | 98.860 (6) |
V (Å3) | 1692.32 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 11.47 |
Crystal size (mm) | 0.28 × 0.12 × 0.03 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.221, 0.709 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20759, 4943, 4081 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.062, 1.00 |
No. of reflections | 4943 |
No. of parameters | 210 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.33, −1.43 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13B···N2i | 0.99 | 2.60 | 3.496 (5) | 151 |
C12—H12···Cg1ii | 0.95 | 2.85 | 3.559 (4) | 132 |
C13—H13A···Cg1iii | 0.99 | 2.72 | 3.523 (4) | 139 |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, −y+1, −z. |
References
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117–x118. CAS Google Scholar
Hörner, M., Bortoluzzi, A. J., Beck, J. & Serafin, M. (2002). Z. Anorg. Allg. Chem. 628, 1104–1107. Google Scholar
Hörner, M., Carratu, V. S., Bordinhao, J., Silva, A. & Niquet, E. (2004). Acta Cryst. C60, m140–m142. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hörner, M., Manzoni de Oliveira, G., Bonini, J. S. & Fenner, H. (2006). J. Organomet. Chem. 691, 655–658. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Melardi, M. R., Khalili Ghaydari, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x281–x282. CAS Google Scholar
Melardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67–x68. CAS Google Scholar
Melardi, M. R., Salemi, Y., Razi Kazemi, S. & Rofouei, M. K. (2009). Acta Cryst. E65, m302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moore, D. S. & Robinson, S. D. (1986). Adv. Inorg. Chem. Radiochem. 30, 1–68. CrossRef CAS Web of Science Google Scholar
Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792–1798. Web of Science CSD CrossRef CAS Google Scholar
Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta, 362, 3777–3784. Web of Science CSD CrossRef CAS Google Scholar
Rofouei, M. K., Melardi, M. R., Khalili Ghaydari, H. R. & Barkhi, M. (2009). Acta Cryst. E65, m351. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rofouei, M. K., Melardi, M. R., Salemi, Y. & Kazemi, S. R. (2009). Acta Cryst. E65, o719. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79–x80. CAS Google Scholar
Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry, pp. 189–244, Oxford: Pergamon Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes containing 1,3-diaryltriazenide ligands have been the object of numerous structural studies in the past few years because of their diverse range of coordination geometries. The uncoordinated –NN–N– compounds commonly adopt a trans configuration in the ground state. As ligands they exhibit versatile coordination geometries: with single or twofold nitrogen chains, neutral or anionic (triazenides) donor sets; they can be monodentate, (N1, N3)-chelating towards one metal atom or (N1, N3)-bridging over two metal atoms (Moore & Robinson, 1986), and they show a remarkable ability to support the stereochemical requisites of a wide variety of transition metal complexes (Hörner et al., 2002, 2004). In these compounds, secondary bonds, or interactions such as hydrogen bonds and metal π-aryl interactions, can play an important role in their structures (Vrieze & Van Koten, 1987; Hörner et al., 2006). We have previously reported the synthesis of the ligands, 1,3-bis(2-methoxyphenyl)]triazene (Rofouei et al., 2006), [1,3-bis(2-ethoxyphenyl)]triazene (Rofouei, Melardi, Salemi et al., 2009), and [1,3-bis(2-cyanophenyl)]triazene (Melardi et al., 2008). Representative metal complexes include the HgII complex with [1,3-bis(2-methoxyphenyl)]triazene by using HgCl2 (Melardi et al., 2007), HgBr2 (Hematyar & Rofouei 2008), Hg(CH3COO)2 and Hg(SCN)2 (Rofouei, Hematyar et al., 2009) salts as starting materials. In addition, Ag(I) and Cd(II) complexes with this ligand are known (Payehghadr et al., 2007; Rofouei, Melardi, Khalili Ghaydari et al., 2009). More recently, a HgII complex with [1,3-bis(2-ethoxyphenyl)]triazene as ligand was reported in which HgCl2 was used as the starting salt (Melardi et al., 2009). In this paper, a HgII complex using HgBr2 as a starting material is reported. It is isomorphous to the latter chloride complex.
The molecular structure of HgBr(C16H18N3O2) is presented in Fig. 1. The HgII atom is coordinated by one triazenide and one bromide ion. The 1,3-bis(2-ethoxyphenyl)triazenide is coordinated to the central atom through two N atoms [Hg1–N1 = 2.086 (3) Å and Hg1–N3 = 2.660 (3) Å] and one O atom [Hg1–O1 = 2.722 (3) Å] at a relatively long distance. The Hg1–Br1 distance of 2.4014 (4) Å is shorter than the corresponding distance in 1,3-bis(2-methoxyphenyl) with Hg1–Br1 = 2.5175 (11) Å (Hematyar & Rofouei, 2008). The Hg–Cl, Hg–O and Hg–N bonds distances in the isomorphous chloride, HgCl(C16H18N3O2), are 2.284 (8), 2.721 (2), 2.074 (2) and 2.674 (2) Å, respectively. The atoms of the ligand and the bromide ion generate a plane (maximum deviation from coplanarity of 0.037 Å).
In the title compound, the monomeric HgBr(C16H18N3O2) moieties are linked to pairs through non-classical C13–H13B···N2 hydrogen bond (C13···N2 = 3.496 (5) Å and <C13–H13B···N2 = 151 °, symmetry code (-x, 2 - y, -z). Also, weak Hg-η3-arene π-interactions (mean distance of 3.434 (3) Å) are present between these dimers. The secondary Hg-η3-arene π-interactions involving three carbon atoms of the C1–C6 phenyl ring. These metal-π interactions involve the Hg1 atom and C4 [3.461 (5) Å], C5 [3.254 (5) Å] and C6 [3.515 (5) Å] atoms with related symmetry code (-x, 2 - y, -z) (Fig. 2). The resulted dimeric units are assembled into zigzag chains by translation along the crystallographic c axis through secondary C–H···π stacking interactions. These edge-to-face interactions are present between CH group of phenyl rings and aromatic rings with H···π distances of 2.72 and 2.85 Å for C13–H13A···Cg1 [symmetry code: 1/2 - x, -1/2 + y, 1/2 - z] and C12–H12···Cg1 [symmetry code: -x, 1 - y, -z], respectively in which Cg1 is the centroid for C7—C12 aromatic ring (Fig. 3). The sum of the weak non-covalent interactions seems to play an important role in the crystal packing. The unit cell packing diagram of the title compound is shown in Fig. 4.