metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1224-m1225

Bis[4-oxido-2-oxo-2,3-di­hydro­pyrimidin-1-ium-5-carboxyl­ato(1.5−)-κ2O4,O5]bis­­(1,10-phenanthroline-κ2N,N′)dysprosium(III) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenziluczl@yahoo.co.uk

(Received 25 August 2009; accepted 11 September 2009; online 19 September 2009)

In the title compound, [Dy(C5H2.5N2O4)2(C12H8N2)2]·2H2O, the DyIII ion is located on a twofold rotation axis and is coordinated in a square-anti­prismatic geometry by two chelating 1,10-phenanthroline mol­ecules as well as two 4-oxido-2-oxo-2,3-di­hydro­pyrimidin-1-ium-5-carboxyl­ato(1.5−) anions. N—H⋯O and O—H⋯O hydrogen bonds help to stabilize the crystal structure. The H atom involved in an N—H⋯N hydrogen bond is disordered around a twofold rotation axis.

Related literature

For isostructural lanthanide complexes with 2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxylic acid, see: Sun & Jin (2004a[Sun, C.-Y. & Jin, L.-P. (2004a). Polyhedron, 23, 2085-2093.],b[Sun, C.-Y. & Jin, L.-P. (2004b). Polyhedron, 23, 2227-2233.]); Xing et al. (2008a[Xing, H.-H., Chen, Z.-L. & Ng, S. W. (2008a). Acta Cryst. E64, m418.]); Xiong et al. (2008a[Xiong, W., Xing, H., Su, Y. & Chen, Z. (2008a). Acta Cryst. E64, m1166-m1167.],b[Xiong, W., Xing, H., Su, Y. & Chen, Z. (2008b). Acta Cryst. E64, m1168-m1169.]). For other metal complexes of 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid, see: Hueso-Ureña et al. (1993[Hueso-Ureña, F., Moreno-Carretero, M. N., Romero-Molina, M. A., Salas-Peregrin, J. M., Sanchez-Sanchez, M. P., Alvarez de Cienfuegos-Lopez, G. & Faure, R. (1993). J. Inorg. Biochem. 51, 613-632.], 1996[Hueso-Ureña, F., Moreno-Carretero, M. N., Quirós-Olozábal, M., Salas-Peregrín, J. M., Faure, R. & Cienfuegos-López, G. A. (1996). Inorg. Chim. Acta, 241, 61-69.]); Baran et al. (1996[Baran, E., Mercaser, R. C., Hueso-Ureña, F., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Salas-Peregrin, J. M. (1996). Polyhedron, 15, 1717-1724.]); Luo et al. (2002[Luo, J.-H., Hong, M.-C., Zhao, Y.-J., Cao, R. & Weng, J.-B. (2002). Chin. J. Struct. Chem. 21, 392-395.]); Maistralis et al. (1991[Maistralis, G., Katsaros, N., Mentzafos, D. & Terzis, A. (1991). Acta Cryst. C47, 740-743.], 1992[Maistralis, G., Katsaros, N., Perlepes, S. P. & Kovala-Demertzi, D. (1992). J. Inorg. Biochem. 45, 1-12.]); Xing et al. (2008b[Xing, H.-H., Chen, Z.-L. & Ng, S. W. (2008b). Acta Cryst. E64, m419-m420.]). For the role played by hydrogen bonds in stabilizing structures, see: Chen et al. (2006[Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m1296-m1297.]); Arora et al. (2009[Arora, K. K., Talwelkar, M. S. & Pedireddi, V. R. (2009). New J. Chem. 33, 57-63.]); Jagan & Sivakumar (2009[Jagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414-o418.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy(C5H2.5N2O4)2(C12H8N2)2]·2H2O

  • Mr = 868.12

  • Monoclinic, C 2/c

  • a = 17.143 (2) Å

  • b = 14.4470 (17) Å

  • c = 13.2211 (16) Å

  • β = 100.613 (2)°

  • V = 3218.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.40 mm−1

  • T = 295 K

  • 0.10 × 0.03 × 0.02 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.796, Tmax = 0.954

  • 11116 measured reflections

  • 2842 independent reflections

  • 2619 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.068

  • S = 1.06

  • 2842 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Dy—O2 2.256 (3)
Dy—O1 2.313 (2)
Dy—N2 2.554 (3)
Dy—N1 2.576 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N3ii 0.86 1.80 2.659 (7) 174
N4—H4⋯O3iii 0.86 2.01 2.867 (4) 178
N4—H4⋯O2iii 0.86 2.62 3.183 (4) 124
O5—H51⋯O3iv 0.85 2.15 2.993 (5) 175
O5—H52⋯O4v 0.85 2.15 2.960 (5) 160
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4-Dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid has been extensively used in the preparation of robust networks or some porous coordination polymers because of its versatile coordination modes. For further investigation of its coordination behavior to lanthanide(III) ions, we report here a new DyIII complex of 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid, which turned out to be isostructural with the analogues EuIII, TbIII, YbIII (2004a,b), ErIII (Xing et al., 2008a) and YIII, GdIII (Xiong et al., 2008a,b) complexes.

In the title complex, (I), the DyIII ion is located on a twofold rotation axis and coordinated in square-antiprismatic geometry completed by four N atoms from two chelating phenanthroline molecules, four O atoms from two chelating 4-oxido-2-oxo-2,3-dihydropyrimidin-1-ium-5-carboxylate(1.5-) anions. The distances of Dy—O are 2.256 (3) and 2.313 (2)Å, and those of Dy—N are 2.554 (3) and 2.576 (3)Å. The averge distance of Dy—O is 2.285Å, which is much shorter than that of Dy—N (2.565Å). The dihedral angle between two phen molecules is 37.726°. As shown in Table 2 and Fig. 2, each coordination unit [Dy(C5H3N2O4)(C5H2N2O4)(C12H8N2)2)] interacts with another four via intermolecular N—H···O and N—H···N hydrogen bonds. Each lattice water molecule links two coordination units mentioned above via O—H···O hydrogen bonds. As a result, these hydrogen bonds link the title complex units and lattice water molecules into a three-dimensional supramolecular network as shown in the packing diagram (Fig. 2). The H atom involved in an N—H···N hydrogen bond is disordered around a twofold rotation axis with half occupancy.

Related literature top

For isostructural lanthanide complexes with 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid, see: Sun & Jin (2004a,b); Xing et al. (2008a); Xiong et al. (2008a,b). For related literature [on what subject?], see: Hueso-Ureña et al. (1993, 1996); Baran et al. (1996); Luo et al. (2002); Maistralis et al. (1991, 1992); Xing et al. (2008b). For the role played by hydrogen bonds in stabilizing structures, see: Chen et al. (2006); Arora et al. (2009); Jagan & Sivakumar (2009).

Experimental top

A mixture of 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid (0.0312 g, 0.2 mmol), DyCl3.6H2O (0.0754 g, 0.2 mmol), Phen.H2O (0.0396 g, 0.2 mmol), NaOH (0.00800 g, 0.2 mmol), water (15 ml) was sealed in a 25 ml,Teflon-lined stainless-steel reactor and heated to 383 K for 120 h, it was then cooled over 48 h, light yellow crystals were isolated in 80% yield. Elemental analysis for C34H25DyN8O10, calculated: C 47.04, H 2.90, N 12.91%; found: C 47.49, H 2.96, N 13.24%.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and allowed to ride on their parent atoms [Uiso(H) = 1.5Ueq(O)]. Other H atoms were placed at calculated positions (C–H = 0.93 Å and N—H = 0.86 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N). The pyrimidine hydrogen atom H3 is shared by two N—H groups and thus has an occupancy factor of 0.5.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and 30% displacement ellipsoids.
[Figure 2] Fig. 2. A view of the packing diagram of the title compound viewed down the c axis. H atoms not involving in hydrogen bonds are omitted for clarity.
Bis[4-oxido-2-oxo-2,3-dihydropyrimidin-1-ium-5-carboxylato(1.5-)- κ2O5,O6]bis(1,10-phenanthroline- κ2N,N')dysprosium(III) dihydrate top
Crystal data top
[Dy(C5H2.5N2O4)2(C12H8N2)2]·2H2OF(000) = 1724
Mr = 868.12Dx = 1.792 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4430 reflections
a = 17.143 (2) Åθ = 2.3–26.9°
b = 14.4470 (17) ŵ = 2.40 mm1
c = 13.2211 (16) ÅT = 295 K
β = 100.613 (2)°Prism, yellow
V = 3218.3 (7) Å30.10 × 0.03 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2842 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2020
Tmin = 0.796, Tmax = 0.954k = 1717
11116 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0366P)2 + 4.1092P]
where P = (Fo2 + 2Fc2)/3
2842 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Dy(C5H2.5N2O4)2(C12H8N2)2]·2H2OV = 3218.3 (7) Å3
Mr = 868.12Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.143 (2) ŵ = 2.40 mm1
b = 14.4470 (17) ÅT = 295 K
c = 13.2211 (16) Å0.10 × 0.03 × 0.02 mm
β = 100.613 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2842 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2619 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.954Rint = 0.037
11116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.06Δρmax = 0.93 e Å3
2842 reflectionsΔρmin = 1.22 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Dy0.00000.612148 (16)0.75000.02165 (10)
N10.03494 (19)0.6959 (2)0.5922 (2)0.0299 (7)
N20.09455 (19)0.7496 (2)0.7881 (3)0.0318 (8)
N30.2176 (2)0.3312 (2)0.9692 (2)0.0379 (9)
H30.24120.27960.98690.046*0.50
N40.16685 (19)0.4740 (2)1.0061 (2)0.0295 (8)
H40.16170.51571.05090.035*
O10.09579 (16)0.56623 (18)0.88770 (19)0.0302 (6)
O20.07048 (16)0.50051 (18)0.68831 (19)0.0327 (6)
O30.15320 (18)0.38990 (19)0.6597 (2)0.0362 (7)
O40.2306 (2)0.38078 (19)1.1355 (2)0.0437 (8)
C10.1236 (2)0.4394 (3)0.7192 (3)0.0278 (9)
C20.1504 (2)0.4274 (3)0.8320 (3)0.0262 (8)
C30.1915 (3)0.3504 (3)0.8700 (3)0.0363 (10)
H3A0.20250.30720.82240.044*
C40.2065 (3)0.3940 (3)1.0424 (3)0.0326 (9)
C50.1350 (2)0.4930 (2)0.9059 (3)0.0240 (8)
C60.1293 (2)0.7739 (3)0.8822 (3)0.0362 (10)
H60.13070.73100.93500.043*
C70.1639 (3)0.8606 (3)0.9064 (4)0.0479 (12)
H70.18750.87500.97360.057*
C80.1626 (3)0.9232 (3)0.8298 (4)0.0507 (13)
H80.18470.98150.84480.061*
C90.1283 (3)0.9012 (3)0.7289 (4)0.0416 (11)
C100.0959 (2)0.8115 (3)0.7112 (3)0.0303 (9)
C110.0644 (2)0.7832 (3)0.6071 (3)0.0315 (9)
C120.0658 (3)0.8453 (3)0.5253 (4)0.0451 (11)
C130.0962 (3)0.9367 (4)0.5480 (4)0.0622 (15)
H130.09540.97860.49450.075*
C140.1256 (3)0.9631 (3)0.6439 (5)0.0610 (15)
H140.14491.02310.65590.073*
C150.0367 (3)0.8133 (4)0.4259 (4)0.0577 (14)
H150.03520.85260.36990.069*
C160.0108 (3)0.7253 (4)0.4111 (3)0.0514 (13)
H160.00640.70290.34480.062*
C170.0099 (2)0.6686 (3)0.4955 (3)0.0384 (10)
H170.00910.60850.48390.046*
O50.3087 (3)0.3123 (3)0.3401 (3)0.0926 (15)
H510.32010.25510.34400.139*
H520.27600.32530.28540.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy0.02842 (15)0.01487 (14)0.01945 (14)0.0000.00135 (10)0.000
N10.0310 (18)0.0264 (18)0.0312 (18)0.0013 (14)0.0023 (14)0.0005 (14)
N20.0311 (19)0.0288 (19)0.0350 (19)0.0034 (15)0.0049 (15)0.0040 (15)
N30.060 (2)0.0248 (18)0.0264 (18)0.0105 (17)0.0002 (16)0.0024 (15)
N40.042 (2)0.0245 (17)0.0195 (16)0.0066 (15)0.0000 (14)0.0021 (13)
O10.0425 (16)0.0218 (14)0.0224 (13)0.0096 (13)0.0044 (12)0.0024 (11)
O20.0439 (17)0.0310 (15)0.0209 (13)0.0115 (13)0.0003 (12)0.0015 (12)
O30.0519 (18)0.0361 (16)0.0211 (14)0.0150 (14)0.0079 (13)0.0015 (12)
O40.060 (2)0.0342 (17)0.0305 (16)0.0059 (15)0.0095 (14)0.0031 (13)
C10.036 (2)0.021 (2)0.025 (2)0.0020 (18)0.0015 (17)0.0014 (17)
C20.032 (2)0.024 (2)0.0217 (19)0.0052 (17)0.0024 (16)0.0012 (16)
C30.053 (3)0.025 (2)0.029 (2)0.010 (2)0.0043 (19)0.0041 (18)
C40.039 (2)0.028 (2)0.028 (2)0.0024 (18)0.0028 (17)0.0038 (17)
C50.029 (2)0.021 (2)0.0211 (19)0.0003 (16)0.0017 (15)0.0000 (15)
C60.038 (2)0.033 (2)0.035 (2)0.0083 (19)0.0024 (19)0.0072 (19)
C70.043 (3)0.048 (3)0.052 (3)0.014 (2)0.009 (2)0.024 (2)
C80.051 (3)0.034 (3)0.068 (3)0.016 (2)0.013 (3)0.019 (3)
C90.042 (3)0.024 (2)0.061 (3)0.0076 (19)0.014 (2)0.006 (2)
C100.025 (2)0.026 (2)0.040 (2)0.0013 (16)0.0070 (17)0.0005 (18)
C110.029 (2)0.029 (2)0.037 (2)0.0015 (17)0.0071 (18)0.0051 (18)
C120.044 (3)0.041 (3)0.052 (3)0.003 (2)0.012 (2)0.014 (2)
C130.077 (4)0.044 (3)0.066 (4)0.014 (3)0.013 (3)0.022 (3)
C140.070 (4)0.028 (3)0.088 (4)0.015 (2)0.022 (3)0.005 (3)
C150.067 (4)0.066 (4)0.038 (3)0.010 (3)0.007 (2)0.024 (3)
C160.056 (3)0.070 (4)0.028 (2)0.013 (3)0.007 (2)0.005 (2)
C170.037 (2)0.042 (3)0.036 (2)0.004 (2)0.0056 (19)0.005 (2)
O50.142 (4)0.047 (2)0.070 (3)0.003 (3)0.027 (3)0.010 (2)
Geometric parameters (Å, º) top
Dy—O2i2.256 (3)C2—C51.420 (5)
Dy—O22.256 (3)C3—H3A0.9300
Dy—O1i2.313 (2)C6—C71.398 (6)
Dy—O12.313 (2)C6—H60.9300
Dy—N22.554 (3)C7—C81.355 (7)
Dy—N2i2.554 (3)C7—H70.9300
Dy—N1i2.576 (3)C8—C91.392 (7)
Dy—N12.576 (3)C8—H80.9300
N1—C171.331 (5)C9—C101.412 (5)
N1—C111.360 (5)C9—C141.431 (7)
N2—C61.324 (5)C10—C111.442 (6)
N2—C101.358 (5)C11—C121.408 (6)
N3—C31.335 (5)C12—C151.397 (7)
N3—C41.364 (5)C12—C131.430 (7)
N3—H30.8600C13—C141.331 (8)
N4—C51.365 (5)C13—H130.9300
N4—C41.382 (5)C14—H140.9300
N4—H40.8600C15—C161.349 (7)
O1—C51.253 (4)C15—H150.9300
O2—C11.279 (4)C16—C171.386 (6)
O3—C11.239 (5)C16—H160.9300
O4—C41.239 (5)C17—H170.9300
C1—C21.488 (5)O5—H510.8483
C2—C31.363 (6)O5—H520.8510
O2i—Dy—O288.73 (14)C5—C2—C1123.4 (3)
O2i—Dy—O1i74.32 (9)N3—C3—C2126.1 (4)
O2—Dy—O1i81.97 (10)N3—C3—H3A117.0
O2i—Dy—O181.97 (10)C2—C3—H3A117.0
O2—Dy—O174.32 (9)O4—C4—N3122.5 (4)
O1i—Dy—O1146.67 (13)O4—C4—N4121.7 (4)
O2i—Dy—N2147.90 (10)N3—C4—N4115.8 (3)
O2—Dy—N2105.34 (10)O1—C5—N4117.4 (3)
O1i—Dy—N2135.32 (10)O1—C5—C2126.3 (3)
O1—Dy—N274.62 (10)N4—C5—C2116.3 (3)
O2i—Dy—N2i105.34 (10)N2—C6—C7123.4 (4)
O2—Dy—N2i147.90 (10)N2—C6—H6118.3
O1i—Dy—N2i74.62 (10)C7—C6—H6118.3
O1—Dy—N2i135.32 (10)C8—C7—C6118.7 (4)
N2—Dy—N2i77.95 (15)C8—C7—H7120.6
O2i—Dy—N1i79.80 (10)C6—C7—H7120.6
O2—Dy—N1i148.05 (10)C7—C8—C9120.6 (4)
O1i—Dy—N1i122.34 (10)C7—C8—H8119.7
O1—Dy—N1i74.60 (9)C9—C8—H8119.7
N2—Dy—N1i73.07 (10)C8—C9—C10116.9 (4)
N2i—Dy—N1i63.96 (10)C8—C9—C14123.8 (4)
O2i—Dy—N1148.05 (10)C10—C9—C14119.3 (4)
O2—Dy—N179.80 (10)N2—C10—C9122.7 (4)
O1i—Dy—N174.60 (9)N2—C10—C11118.3 (3)
O1—Dy—N1122.34 (10)C9—C10—C11119.0 (4)
N2—Dy—N163.96 (10)N1—C11—C12122.6 (4)
N2i—Dy—N173.07 (10)N1—C11—C10117.7 (3)
N1i—Dy—N1123.98 (14)C12—C11—C10119.8 (4)
C17—N1—C11117.3 (4)C15—C12—C11117.2 (4)
C17—N1—Dy123.9 (3)C15—C12—C13123.8 (4)
C11—N1—Dy117.0 (2)C11—C12—C13118.9 (4)
C6—N2—C10117.6 (3)C14—C13—C12121.6 (5)
C6—N2—Dy123.4 (3)C14—C13—H13119.2
C10—N2—Dy117.5 (2)C12—C13—H13119.2
C3—N3—C4119.6 (3)C13—C14—C9121.3 (5)
C3—N3—H3120.2C13—C14—H14119.3
C4—N3—H3120.2C9—C14—H14119.3
C5—N4—C4126.0 (3)C16—C15—C12120.0 (4)
C5—N4—H4117.0C16—C15—H15120.0
C4—N4—H4117.0C12—C15—H15120.0
C5—O1—Dy132.2 (2)C15—C16—C17119.4 (4)
C1—O2—Dy140.8 (2)C15—C16—H16120.3
O3—C1—O2123.1 (3)C17—C16—H16120.3
O3—C1—C2118.8 (3)N1—C17—C16123.3 (4)
O2—C1—C2118.1 (3)N1—C17—H17118.3
C3—C2—C5116.1 (3)C16—C17—H17118.3
C3—C2—C1120.5 (3)H51—O5—H52112.0
O2i—Dy—N1—C176.9 (4)C1—C2—C3—N3178.9 (4)
O2—Dy—N1—C1763.8 (3)C3—N3—C4—O4178.8 (4)
O1i—Dy—N1—C1720.6 (3)C3—N3—C4—N41.0 (6)
O1—Dy—N1—C17127.8 (3)C5—N4—C4—O4176.8 (4)
N2—Dy—N1—C17176.6 (3)C5—N4—C4—N33.4 (6)
N2i—Dy—N1—C1798.8 (3)Dy—O1—C5—N4158.4 (3)
N1i—Dy—N1—C17139.5 (3)Dy—O1—C5—C222.1 (6)
O2i—Dy—N1—C11157.4 (2)C4—N4—C5—O1174.7 (4)
O2—Dy—N1—C11132.0 (3)C4—N4—C5—C25.7 (6)
O1i—Dy—N1—C11143.6 (3)C3—C2—C5—O1177.0 (4)
O1—Dy—N1—C1168.0 (3)C1—C2—C5—O12.6 (6)
N2—Dy—N1—C1119.2 (3)C3—C2—C5—N43.4 (5)
N2i—Dy—N1—C1165.4 (3)C1—C2—C5—N4177.0 (3)
N1i—Dy—N1—C1124.7 (2)C10—N2—C6—C72.7 (6)
O2i—Dy—N2—C68.4 (4)Dy—N2—C6—C7162.9 (3)
O2—Dy—N2—C6104.8 (3)N2—C6—C7—C80.4 (7)
O1i—Dy—N2—C6161.1 (3)C6—C7—C8—C90.9 (7)
O1—Dy—N2—C636.2 (3)C7—C8—C9—C100.2 (7)
N2i—Dy—N2—C6108.1 (3)C7—C8—C9—C14179.1 (5)
N1i—Dy—N2—C642.0 (3)C6—N2—C10—C93.9 (6)
N1—Dy—N2—C6175.0 (3)Dy—N2—C10—C9162.6 (3)
O2i—Dy—N2—C10157.3 (3)C6—N2—C10—C11174.8 (4)
O2—Dy—N2—C1089.6 (3)Dy—N2—C10—C1118.7 (5)
O1i—Dy—N2—C104.5 (3)C8—C9—C10—N22.7 (6)
O1—Dy—N2—C10158.1 (3)C14—C9—C10—N2178.4 (4)
N2i—Dy—N2—C1057.6 (2)C8—C9—C10—C11176.0 (4)
N1i—Dy—N2—C10123.7 (3)C14—C9—C10—C112.9 (6)
N1—Dy—N2—C1019.3 (3)C17—N1—C11—C122.9 (6)
O2i—Dy—O1—C568.0 (3)Dy—N1—C11—C12162.4 (3)
O2—Dy—O1—C522.9 (3)C17—N1—C11—C10176.5 (4)
O1i—Dy—O1—C523.4 (3)Dy—N1—C11—C1018.3 (4)
N2—Dy—O1—C5134.2 (4)N2—C10—C11—N10.1 (5)
N2i—Dy—O1—C5171.7 (3)C9—C10—C11—N1178.8 (4)
N1i—Dy—O1—C5149.6 (4)N2—C10—C11—C12179.3 (4)
N1—Dy—O1—C589.6 (3)C9—C10—C11—C120.6 (6)
O2i—Dy—O2—C172.1 (4)N1—C11—C12—C151.3 (7)
O1i—Dy—O2—C1146.4 (4)C10—C11—C12—C15178.1 (4)
O1—Dy—O2—C19.9 (4)N1—C11—C12—C13178.6 (4)
N2—Dy—O2—C178.7 (4)C10—C11—C12—C132.0 (6)
N2i—Dy—O2—C1170.4 (4)C15—C12—C13—C14177.8 (6)
N1i—Dy—O2—C13.8 (5)C11—C12—C13—C142.3 (8)
N1—Dy—O2—C1137.9 (4)C12—C13—C14—C90.1 (9)
Dy—O2—C1—O3176.1 (3)C8—C9—C14—C13176.1 (5)
Dy—O2—C1—C24.2 (6)C10—C9—C14—C132.8 (8)
O3—C1—C2—C315.5 (6)C11—C12—C15—C161.7 (8)
O2—C1—C2—C3164.1 (4)C13—C12—C15—C16178.4 (5)
O3—C1—C2—C5164.9 (4)C12—C15—C16—C172.9 (8)
O2—C1—C2—C515.4 (6)C11—N1—C17—C161.7 (6)
C4—N3—C3—C23.0 (7)Dy—N1—C17—C16162.5 (3)
C5—C2—C3—N30.7 (7)C15—C16—C17—N11.2 (8)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N3ii0.861.802.659 (7)174
N4—H4···O3iii0.862.012.867 (4)178
N4—H4···O2iii0.862.623.183 (4)124
O5—H51···O3iv0.852.152.993 (5)175
O5—H52···O4v0.852.152.960 (5)160
Symmetry codes: (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formula[Dy(C5H2.5N2O4)2(C12H8N2)2]·2H2O
Mr868.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)17.143 (2), 14.4470 (17), 13.2211 (16)
β (°) 100.613 (2)
V3)3218.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.10 × 0.03 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.796, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
11116, 2842, 2619
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.068, 1.06
No. of reflections2842
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 1.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Dy—O22.256 (3)Dy—N22.554 (3)
Dy—O12.313 (2)Dy—N12.576 (3)
O2i—Dy—O288.73 (14)N2—Dy—N2i77.95 (15)
O2—Dy—O1i81.97 (10)O2—Dy—N1i148.05 (10)
O2—Dy—O174.32 (9)O1—Dy—N1i74.60 (9)
O1i—Dy—O1146.67 (13)N2—Dy—N1i73.07 (10)
O2i—Dy—N2147.90 (10)O2—Dy—N179.80 (10)
O2—Dy—N2105.34 (10)O1—Dy—N1122.34 (10)
O1i—Dy—N2135.32 (10)N2—Dy—N163.96 (10)
O1—Dy—N274.62 (10)N1i—Dy—N1123.98 (14)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N3ii0.861.802.659 (7)174.2
N4—H4···O3iii0.862.012.867 (4)177.5
N4—H4···O2iii0.862.623.183 (4)124.4
O5—H51···O3iv0.852.152.993 (5)175.4
O5—H52···O4v0.852.152.960 (5)159.8
Symmetry codes: (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1.
 

Acknowledgements

The authors are grateful for financial support from the Guangxi Natural Science Foundation (grant No. 0991008) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, China (grant No. [2006]331).

References

First citationArora, K. K., Talwelkar, M. S. & Pedireddi, V. R. (2009). New J. Chem. 33, 57–63.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaran, E., Mercaser, R. C., Hueso-Ureña, F., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Salas-Peregrin, J. M. (1996). Polyhedron, 15, 1717–1724.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m1296–m1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHueso-Ureña, F., Moreno-Carretero, M. N., Romero-Molina, M. A., Salas-Peregrin, J. M., Sanchez-Sanchez, M. P., Alvarez de Cienfuegos-Lopez, G. & Faure, R. (1993). J. Inorg. Biochem. 51, 613–632.  CSD CrossRef Web of Science Google Scholar
First citationHueso-Ureña, F., Moreno-Carretero, M. N., Quirós-Olozábal, M., Salas-Peregrín, J. M., Faure, R. & Cienfuegos-López, G. A. (1996). Inorg. Chim. Acta, 241, 61–69.  CSD CrossRef Web of Science Google Scholar
First citationJagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414–o418.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuo, J.-H., Hong, M.-C., Zhao, Y.-J., Cao, R. & Weng, J.-B. (2002). Chin. J. Struct. Chem. 21, 392–395.  CAS Google Scholar
First citationMaistralis, G., Katsaros, N., Mentzafos, D. & Terzis, A. (1991). Acta Cryst. C47, 740–743.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaistralis, G., Katsaros, N., Perlepes, S. P. & Kovala-Demertzi, D. (1992). J. Inorg. Biochem. 45, 1–12.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C.-Y. & Jin, L.-P. (2004a). Polyhedron, 23, 2085–2093.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, C.-Y. & Jin, L.-P. (2004b). Polyhedron, 23, 2227–2233.  Web of Science CSD CrossRef CAS Google Scholar
First citationXing, H.-H., Chen, Z.-L. & Ng, S. W. (2008a). Acta Cryst. E64, m418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, H.-H., Chen, Z.-L. & Ng, S. W. (2008b). Acta Cryst. E64, m419–m420.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXiong, W., Xing, H., Su, Y. & Chen, Z. (2008a). Acta Cryst. E64, m1166–m1167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, W., Xing, H., Su, Y. & Chen, Z. (2008b). Acta Cryst. E64, m1168–m1169.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1224-m1225
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds