organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Phenyl­semicarbazide

aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: uzzmma@yahoo.com

(Received 11 August 2009; accepted 1 September 2009; online 5 September 2009)

The title compound, C7H9N3O, crystallizes with two independent mol­ecules per asymmetric unit. The structure is stabilized by four distinct inter­molecular N—H⋯O hydrogen bonds. Four intra­molecular inter­actions of the N—H⋯N and C—H⋯O types are also observed.

Related literature

For related structures see: Ashiq, Jamal et al. (2008[Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci. X, 24, 103-104.], 2009[Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.]); Jamal et al. (2008[Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.][Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.], 2009[Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o1764.]); Kallel et al. (1992[Kallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137-140.]); Saraogi et al. (2002[Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.]); For the biological activity of hydrazides, see: Ara et al. (2007[Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.]); Ashiq, Ara et al. (2008[Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N3O

  • Mr = 151.17

  • Monoclinic, P 21 /c

  • a = 16.5984 (10) Å

  • b = 8.8862 (4) Å

  • c = 10.3518 (6) Å

  • β = 91.359 (3)°

  • V = 1526.43 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.43 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.990

  • 15394 measured reflections

  • 3500 independent reflections

  • 2258 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.03

  • 3500 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11N⋯N13 0.849 (16) 2.130 (15) 2.6149 (19) 116.0 (13)
N12—H12N⋯O21i 0.872 (15) 2.071 (15) 2.9386 (15) 172.8 (14)
N13—H14N⋯O11ii 0.887 (18) 2.383 (17) 3.2149 (18) 156.1 (15)
N21—H21N⋯N23 0.852 (16) 2.130 (17) 2.6093 (19) 115.3 (14)
N22—H22N⋯O11iii 0.901 (16) 2.079 (17) 2.9784 (17) 175.9 (14)
N23—H23N⋯O21iv 0.919 (17) 2.203 (17) 3.0850 (18) 160.5 (15)
C12—H12⋯O11 0.93 2.33 2.9119 (18) 120
C22—H22⋯O21 0.93 2.46 2.9833 (18) 116
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazides are known to have different biological activities (Ashiq, Ara et al., 2008; Ara et al., 2007). In order to study the biological activity of 4-phenylsemicarbazide, we undertook the synthesis of title compound and report its crystal structure in this paper. The title compound was found to be active against urease enzyme (Ara et al., 2007). The structures of benzhydrazide (Kallel et al., 1992), para-chloro (Saraogi et al., 2002), para-bromo (Ashiq, Jamal et al., 2008), para-iodo (Jamal et al., 2008), para-methoxy (Ashiq, Jamal et al., 2009) and para-hydroxy (Jamal et al., 2009) analogues have already been reported.

The unit cell contains two crystallographically unique molecules, whose molecular structures are presented in Fig. 1. The bond distances and bond angles are similar to the corresponding distances and angles reported in the structures quoted above. The molecular packing diagram (Fig. 2) shows the presence of four intermolecular hydrogen bonds and four intramolecular hydrogen interactions. In the crystal structure, two adjacent molecules are held together by intermolecular hydrogen bonds between the N12—H12N···O21, N13—H14N···O11, N22—H22N···O11 and N23—H23N···O21 (details are given in Table 1).

Related literature top

For related structures see: Ashiq, Jamal et al. (2008, 2009); Jamal et al. (2008, 2009); Kallel et al. (1992); Saraogi et al. (2002); For the biological activity of hydrazides, see: Ara et al. (2007); Ashiq, Ara et al. (2008).

Experimental top

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of phenyl urea (34 g, 0.25 moles) in 50 ml ethanol, hydrazine hydrate (25.0 ml, 0.45 moles) was added. The mixture was refluxed for 24 h and solid 4-phenylsemicarbazide was obtained upon removal of the solvent by rotary evaporation (yield 79%).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic C-atoms, and for N1 and N2 atoms were taken from fourier synthesis and their coordinates were refined with N—H = 0.849 (16)–0.918 (17)Å with Uiso set to 1.2Ueq of their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with the ellipsoids drawn at the 50% probability level, showing the atomic labels.
[Figure 2] Fig. 2. A packing diagram viewed down the c axis showing hydrogen bonds drawn as dashed lines. Hydrogen atoms not involved in H-bonding have been omitted.
4-Phenylsemicarbazide top
Crystal data top
C7H9N3OF(000) = 640
Mr = 151.17Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3838 reflections
a = 16.5984 (10) Åθ = 2.5–24.4°
b = 8.8862 (4) ŵ = 0.09 mm1
c = 10.3518 (6) ÅT = 296 K
β = 91.359 (3)°Needle, colourless
V = 1526.43 (14) Å30.43 × 0.15 × 0.12 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3500 independent reflections
Radiation source: fine-focus sealed tube2258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2120
Tmin = 0.979, Tmax = 0.990k = 611
15394 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.1614P]
where P = (Fo2 + 2Fc2)/3
3500 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C7H9N3OV = 1526.43 (14) Å3
Mr = 151.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.5984 (10) ŵ = 0.09 mm1
b = 8.8862 (4) ÅT = 296 K
c = 10.3518 (6) Å0.43 × 0.15 × 0.12 mm
β = 91.359 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2258 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.990Rint = 0.030
15394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
3500 reflectionsΔρmin = 0.15 e Å3
223 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.01604 (6)0.79747 (12)0.48141 (10)0.0553 (4)
N110.09359 (7)0.58992 (13)0.44101 (12)0.0427 (4)
N120.01754 (7)0.64373 (13)0.31698 (11)0.0438 (4)
N130.00041 (8)0.51513 (16)0.24513 (14)0.0506 (5)
C110.15892 (8)0.60879 (14)0.52831 (12)0.0354 (4)
C120.16095 (9)0.71248 (16)0.62779 (13)0.0439 (5)
C130.22909 (10)0.72368 (18)0.70707 (15)0.0508 (5)
C140.29449 (9)0.63342 (19)0.68932 (15)0.0554 (6)
C150.29205 (10)0.52914 (19)0.59133 (16)0.0572 (6)
C160.22502 (9)0.51619 (17)0.51125 (14)0.0462 (5)
C170.03011 (8)0.68266 (15)0.41816 (13)0.0378 (5)
O210.17516 (6)0.28317 (12)0.23819 (10)0.0529 (4)
N210.28009 (7)0.40092 (15)0.13966 (13)0.0500 (5)
N220.15623 (8)0.38933 (15)0.04272 (12)0.0488 (4)
N230.18846 (8)0.47117 (17)0.05959 (13)0.0514 (5)
C210.34464 (8)0.38042 (16)0.22790 (14)0.0433 (5)
C220.34917 (9)0.26384 (18)0.31535 (15)0.0509 (5)
C230.41651 (9)0.2490 (2)0.39537 (16)0.0593 (6)
C240.47943 (10)0.3476 (2)0.38889 (17)0.0643 (6)
C250.47515 (10)0.4626 (2)0.30239 (18)0.0707 (7)
C260.40834 (9)0.48014 (19)0.22223 (17)0.0596 (6)
C270.20285 (8)0.35311 (15)0.14604 (14)0.0405 (5)
H11N0.0960 (9)0.5210 (18)0.3845 (15)0.0510*
H120.116800.774400.641400.0530*
H12N0.0624 (9)0.6927 (17)0.3025 (14)0.0530*
H130.230300.794000.773600.0610*
H13N0.0413 (10)0.4498 (19)0.2569 (15)0.0610*
H140.340000.642400.742800.0660*
H14N0.0017 (10)0.5393 (19)0.1621 (17)0.0610*
H150.336100.466600.579000.0690*
H160.224100.445000.445400.0550*
H21N0.2880 (10)0.4551 (18)0.0733 (16)0.0600*
H220.307000.195300.320600.0610*
H22N0.1043 (10)0.3598 (17)0.0395 (15)0.0590*
H230.419000.170400.454700.0710*
H23N0.1844 (10)0.4143 (19)0.1336 (16)0.0620*
H240.524600.336200.442900.0770*
H24N0.1591 (10)0.5550 (19)0.0679 (15)0.0620*
H250.517800.530100.297200.0850*
H260.406100.559700.163900.0720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0570 (7)0.0548 (7)0.0534 (7)0.0192 (5)0.0156 (5)0.0142 (5)
N110.0424 (7)0.0419 (7)0.0434 (7)0.0079 (6)0.0090 (6)0.0063 (5)
N120.0394 (7)0.0465 (7)0.0449 (7)0.0100 (6)0.0088 (6)0.0061 (6)
N130.0484 (8)0.0510 (8)0.0519 (8)0.0034 (6)0.0074 (7)0.0105 (7)
C110.0355 (7)0.0362 (7)0.0345 (7)0.0003 (6)0.0002 (6)0.0061 (6)
C120.0433 (8)0.0468 (8)0.0416 (8)0.0066 (7)0.0014 (6)0.0018 (7)
C130.0546 (10)0.0539 (9)0.0435 (9)0.0006 (8)0.0050 (7)0.0052 (7)
C140.0438 (9)0.0679 (11)0.0537 (10)0.0002 (8)0.0136 (7)0.0009 (8)
C150.0435 (9)0.0658 (11)0.0619 (10)0.0155 (8)0.0063 (8)0.0005 (8)
C160.0438 (8)0.0480 (9)0.0464 (9)0.0087 (7)0.0042 (7)0.0025 (7)
C170.0372 (8)0.0392 (8)0.0370 (8)0.0024 (6)0.0014 (6)0.0032 (6)
O210.0386 (6)0.0680 (7)0.0520 (7)0.0068 (5)0.0024 (5)0.0135 (5)
N210.0380 (7)0.0630 (9)0.0488 (8)0.0090 (6)0.0040 (6)0.0102 (6)
N220.0372 (7)0.0595 (8)0.0495 (8)0.0050 (6)0.0050 (6)0.0095 (6)
N230.0517 (8)0.0591 (9)0.0432 (8)0.0001 (6)0.0026 (6)0.0044 (7)
C210.0340 (8)0.0526 (9)0.0433 (8)0.0017 (6)0.0008 (6)0.0063 (7)
C220.0384 (8)0.0566 (10)0.0578 (10)0.0019 (7)0.0009 (7)0.0013 (8)
C230.0455 (10)0.0743 (12)0.0579 (10)0.0094 (8)0.0022 (8)0.0068 (9)
C240.0405 (9)0.0906 (13)0.0612 (11)0.0034 (9)0.0121 (8)0.0091 (10)
C250.0445 (10)0.0823 (13)0.0846 (13)0.0177 (9)0.0116 (9)0.0025 (11)
C260.0488 (10)0.0628 (11)0.0669 (11)0.0135 (8)0.0044 (8)0.0043 (8)
C270.0355 (8)0.0419 (8)0.0440 (8)0.0013 (6)0.0016 (6)0.0033 (7)
Geometric parameters (Å, º) top
O11—C171.2375 (17)C12—C131.385 (2)
O21—C271.2362 (17)C13—C141.366 (2)
N11—C111.4051 (18)C14—C151.374 (2)
N11—C171.3541 (18)C15—C161.376 (2)
N12—N131.3964 (18)C12—H120.9300
N12—C171.3427 (18)C13—H130.9300
N11—H11N0.849 (16)C14—H140.9300
N12—H12N0.872 (15)C15—H150.9300
N13—H14N0.887 (18)C16—H160.9300
N13—H13N0.904 (17)C21—C221.377 (2)
N21—C211.4032 (19)C21—C261.382 (2)
N21—C271.3537 (18)C22—C231.382 (2)
N22—C271.3443 (19)C23—C241.366 (2)
N22—N231.4013 (19)C24—C251.360 (3)
N21—H21N0.852 (16)C25—C261.378 (2)
N22—H22N0.901 (16)C22—H220.9300
N23—H23N0.919 (17)C23—H230.9300
N23—H24N0.893 (17)C24—H240.9300
C11—C121.3817 (19)C25—H250.9300
C11—C161.386 (2)C26—H260.9300
C11—N11—C17128.70 (12)C13—C12—H12120.00
N13—N12—C17120.18 (12)C14—C13—H13119.00
C11—N11—H11N118.8 (10)C12—C13—H13119.00
C17—N11—H11N111.6 (10)C15—C14—H14120.00
C17—N12—H12N119.4 (10)C13—C14—H14120.00
N13—N12—H12N120.0 (10)C16—C15—H15120.00
N12—N13—H14N109.3 (11)C14—C15—H15120.00
H13N—N13—H14N109.5 (15)C15—C16—H16120.00
N12—N13—H13N106.9 (11)C11—C16—H16120.00
C21—N21—C27129.56 (13)C22—C21—C26118.72 (14)
N23—N22—C27120.18 (12)N21—C21—C22123.69 (13)
C21—N21—H21N117.9 (11)N21—C21—C26117.53 (13)
C27—N21—H21N112.4 (11)C21—C22—C23119.79 (14)
C27—N22—H22N119.5 (10)C22—C23—C24121.19 (16)
N23—N22—H22N120.4 (10)C23—C24—C25119.10 (16)
H23N—N23—H24N110.4 (15)C24—C25—C26120.69 (16)
N22—N23—H24N106.8 (10)C21—C26—C25120.50 (16)
N22—N23—H23N108.8 (11)O21—C27—N21124.42 (13)
C12—C11—C16119.04 (13)O21—C27—N22121.12 (13)
N11—C11—C16116.64 (12)N21—C27—N22114.46 (13)
N11—C11—C12124.32 (12)C21—C22—H22120.00
C11—C12—C13119.65 (14)C23—C22—H22120.00
C12—C13—C14121.24 (14)C22—C23—H23119.00
C13—C14—C15119.07 (15)C24—C23—H23119.00
C14—C15—C16120.69 (15)C23—C24—H24120.00
C11—C16—C15120.30 (14)C25—C24—H24120.00
N11—C17—N12114.90 (12)C24—C25—H25120.00
O11—C17—N11124.42 (13)C26—C25—H25120.00
O11—C17—N12120.67 (12)C21—C26—H26120.00
C11—C12—H12120.00C25—C26—H26120.00
C17—N11—C11—C1214.9 (2)C16—C11—C12—C131.0 (2)
C17—N11—C11—C16164.97 (14)N11—C11—C16—C15178.94 (13)
C11—N11—C17—O116.6 (2)C11—C12—C13—C140.3 (2)
C11—N11—C17—N12171.74 (13)C12—C13—C14—C150.4 (2)
N13—N12—C17—O11179.06 (13)C13—C14—C15—C160.5 (2)
N13—N12—C17—N110.66 (18)C14—C15—C16—C110.2 (2)
C21—N21—C27—O212.2 (2)N21—C21—C22—C23177.50 (14)
C27—N21—C21—C2224.3 (2)C26—C21—C22—C230.2 (2)
C27—N21—C21—C26158.35 (15)N21—C21—C26—C25177.24 (15)
C21—N21—C27—N22178.53 (14)C22—C21—C26—C250.2 (2)
N23—N22—C27—N210.5 (2)C21—C22—C23—C240.5 (2)
N23—N22—C27—O21178.77 (13)C22—C23—C24—C250.3 (3)
N11—C11—C12—C13178.84 (13)C23—C24—C25—C260.1 (3)
C12—C11—C16—C150.9 (2)C24—C25—C26—C210.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11N···N130.849 (16)2.130 (15)2.6149 (19)116.0 (13)
N12—H12N···O21i0.872 (15)2.071 (15)2.9386 (15)172.8 (14)
N13—H14N···O11ii0.887 (18)2.383 (17)3.2149 (18)156.1 (15)
N21—H21N···N230.852 (16)2.130 (17)2.6093 (19)115.3 (14)
N22—H22N···O11iii0.901 (16)2.079 (17)2.9784 (17)175.9 (14)
N23—H23N···O21iv0.919 (17)2.203 (17)3.0850 (18)160.5 (15)
C12—H12···O110.932.332.9119 (18)120
C22—H22···O210.932.462.9833 (18)116
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H9N3O
Mr151.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.5984 (10), 8.8862 (4), 10.3518 (6)
β (°) 91.359 (3)
V3)1526.43 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
15394, 3500, 2258
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.03
No. of reflections3500
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11N···N130.849 (16)2.130 (15)2.6149 (19)116.0 (13)
N12—H12N···O21i0.872 (15)2.071 (15)2.9386 (15)172.8 (14)
N13—H14N···O11ii0.887 (18)2.383 (17)3.2149 (18)156.1 (15)
N21—H21N···N230.852 (16)2.130 (17)2.6093 (19)115.3 (14)
N22—H22N···O11iii0.901 (16)2.079 (17)2.9784 (17)175.9 (14)
N23—H23N···O21iv0.919 (17)2.203 (17)3.0850 (18)160.5 (15)
C12—H12···O110.932.332.9119 (18)120
C22—H22···O210.932.462.9833 (18)116
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and Bana International for their support in collecting the crystallographic data.

References

First citationAra, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58–71.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci. X, 24, 103–104.  CSD CrossRef Google Scholar
First citationAshiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o1764.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137–140.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341–o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds