organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[1,1′-(Octane-1,8-diyldi­oxy­di­nitrilo)di­ethyl­­idyne]diphenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 13 August 2009; accepted 25 August 2009; online 5 September 2009)

The title compound, C24H32N2O4, has a crystallographic inversion centre at the mid-point of the central C—C bond. At each end of the mol­ecule, intra­molecular O—H⋯N hydrogen bonds generate six-membered S(6) ring motifs. The crystal structure is stabilized by pairs of weak inter­molecular C—H⋯O hydrogen bonds that link neighbouring mol­ecules into R22(40) ring motifs, which in turn form infinite one-dimensional supra­molecular ribbon structures.

Related literature

For background to oxime-based salen-type tetra­dentate ligands, see: Akine et al. (2005[Akine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704-1711.]); Dong, He et al. (2009[Dong, W. K., He, X. N., Yan, H. B., Lv, Z. W., Chen, X. W. K., Zhao, C. Y. & Tang, X. L. (2009). Polyhedron, 28, 1419-1428.]); Dong, Sun et al. (2009[Dong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009). Inorg. Chim. Acta, 362, 117-124.]). For the synthesis, see: Dong et al. (2008[Dong, W.-K., He, X.-N., Zhong, J.-K., Chen, X. & Yu, T.-Z. (2008). Acta Cryst. E64, o1098.]). For related structures, see: Dong, Zhao et al. (2009[Dong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009). Inorg. Chem. Commun. 12, 234-236.]); Etemadi et al. (2009[Etemadi, B., Kia, R., Sharghi, H. & Hosseini Sarvari, M. (2009). Acta Cryst. E65, o1309.]). For information relating to C—H⋯O hydrogen bonds, see: Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H32N2O4

  • Mr = 412.52

  • Monoclinic, C 2/c

  • a = 12.9524 (12) Å

  • b = 4.6667 (6) Å

  • c = 37.722 (3) Å

  • β = 99.379 (2)°

  • V = 2249.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.50 × 0.48 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.984

  • 5371 measured reflections

  • 1979 independent reflections

  • 1172 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.173

  • S = 1.11

  • 1979 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.84 2.558 (4) 145
C12—H12⋯O2i 0.93 2.64 3.544 (5) 164
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much attention has been focused on oxime-based salen-type tetradentate ligands in recent years due to their high stability against imine metathesis reactions (Akine et al., 2005; Dong, He et al. 2009). A number of their metal complexes have been prepared and reported (Dong, Sun et al. 2009), which demonstrates that bisoxime ligands have strong coordinating ability with transition metals and non-transition metals. In continuation of our previously reported works (Dong, Zhao et al. 2009), here we report synthesis and structure of salen-type bisoxime ligands, 2,2'-[1,1'-(octane-1,8-diyldioxydinitrilo)diethylidyne]diphenol.

The molecular structure of the title compound, as shown in Fig. 1, has a crystallographic inversion centre at the mid-point of the the central C—C bond. Thus there is half a molecule in the asymmetric unit. The two benzene rings are parallel to each other with a perpendicular interplanar spacing of ca 5.316 (2) Å. In each molecule, there exist two intramolecular O—H···N hydrogen bonds, that form two S(6) ring motifs (Fig. 1) (Bernstein et al., 1995). Pairs of weak intermolecular C—H···O hydrogen bonds (Desiraju, 1996) link neighbouring molecules into an infinite one-dimensional supramolecular structure with R22(40) ring motifs (Table 1, Fig. 2), similar to that described by Etemadi et al., (2009).

Related literature top

For background to oxime-based salen-type tetradentate ligands, see: Akine et al. (2005); Dong, He et al. (2009); Dong, Sun et al. (2009). For the synthesis, see: Dong et al. (2008). For related structures, see: Dong, Zhao et al. (2009); Etemadi et al. (2009). For information relating to C—H···O hydrogen bonds, see: Desiraju (1996). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

2,2'-[1,1'-(Octane-1,8-diyldioxydinitrilo)diethylidyne]diphenol was synthesized according to our previous work (Dong et al., 2008). To an ethanol solution (4 ml) of 2'-hydroxyacetophenone (280.7 mg, 2.06 mmol) was added an ethanol solution (4 ml) of 1, 8-bis(aminooxy)octane (180.9 mg, 1.03 mmol). The mixture was stirred at 328–333 K for 48 h. When cooled to room temperature, the resulting white precipitate was filtered, and washed successively with ethanol and n-hexane. The product was dried under vacuum and purified by recrystallization from ethanol to yield 206.5 mg of the title compound. Yield, 49.01%. m. p. 345–347 K. Anal. Calcd. for C24H32N2O4: C, 69.88; H, 7.82; N, 6.79. Found: C, 69.50; H, 7.53; N, 6.87.

Colorless block-like single crystals suitable for X-ray diffraction studies were obtained after several days by slow evaporation from a diethyl ether solution.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2), 0.93 Å (CH), 0.82 Å (OH), and Uiso(H) = 1.20 Ueq(C) for methylene and methylidyne, 1.50 Ueq(C) for methyl, 1.50 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Unlabelled atoms are related to their labelled counterparts by the inversion operation [-x + 3/2,-y + 3/2,-z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the one-dimensional supramolecular structure of the title compound. Intramolecular and intermolecular hydrogen bonds are shown as dashed lines. Colour code: dark gray: C; red: O; blue: N; pale green: H (Macrae et al., 2006).
2,2'-[1,1'-(Octane-1,8-diyldioxydinitrilo)diethylidyne]diphenol top
Crystal data top
C24H32N2O4F(000) = 888
Mr = 412.52Dx = 1.218 Mg m3
Monoclinic, C2/cMelting point = 345–347 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.9524 (12) ÅCell parameters from 1491 reflections
b = 4.6667 (6) Åθ = 2.2–27.2°
c = 37.722 (3) ŵ = 0.08 mm1
β = 99.379 (2)°T = 298 K
V = 2249.6 (4) Å3Block-like, colorless
Z = 40.50 × 0.48 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1979 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.960, Tmax = 0.984k = 55
5371 measured reflectionsl = 3744
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0225P)2 + 4.9486P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1979 reflectionsΔρmax = 0.20 e Å3
137 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0080 (9)
Crystal data top
C24H32N2O4V = 2249.6 (4) Å3
Mr = 412.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.9524 (12) ŵ = 0.08 mm1
b = 4.6667 (6) ÅT = 298 K
c = 37.722 (3) Å0.50 × 0.48 × 0.20 mm
β = 99.379 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1979 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1172 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.984Rint = 0.069
5371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.11Δρmax = 0.20 e Å3
1979 reflectionsΔρmin = 0.21 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3869 (2)0.5102 (7)0.38238 (7)0.0490 (8)
O10.35769 (17)0.6700 (6)0.41082 (6)0.0617 (8)
O20.51778 (18)0.3352 (7)0.34323 (7)0.0746 (9)
H20.49800.42880.35930.112*
C10.4459 (3)0.8346 (9)0.42728 (9)0.0570 (10)
H1A0.42240.97860.44270.068*
H1B0.47570.93350.40870.068*
C20.5297 (2)0.6538 (9)0.44922 (9)0.0513 (9)
H2A0.55940.52540.43330.062*
H2B0.49830.53770.46590.062*
C30.6162 (2)0.8345 (9)0.46995 (9)0.0518 (9)
H3A0.58700.95130.48720.062*
H3B0.64300.96270.45340.062*
C40.7063 (2)0.6595 (9)0.48983 (9)0.0540 (10)
H4A0.67960.53330.50670.065*
H4B0.73470.54060.47270.065*
C50.3132 (2)0.3491 (8)0.36639 (8)0.0440 (9)
C60.2085 (3)0.3295 (12)0.37779 (11)0.0786 (14)
H6A0.19700.13710.38520.118*
H6B0.15520.38050.35800.118*
H6C0.20590.45850.39750.118*
C70.3382 (2)0.1742 (8)0.33664 (8)0.0447 (9)
C80.4372 (3)0.1723 (9)0.32643 (10)0.0547 (10)
C90.4582 (3)0.0008 (10)0.29864 (11)0.0699 (12)
H90.52470.00130.29240.084*
C100.3815 (4)0.1708 (10)0.28013 (10)0.0714 (12)
H100.39610.28620.26150.086*
C110.2835 (4)0.1710 (10)0.28930 (10)0.0699 (12)
H110.23130.28590.27670.084*
C120.2619 (3)0.0026 (9)0.31692 (9)0.0587 (11)
H120.19480.00540.32280.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0372 (16)0.058 (2)0.0459 (16)0.0005 (15)0.0117 (12)0.0031 (17)
O10.0381 (14)0.081 (2)0.0591 (15)0.0022 (14)0.0132 (11)0.0207 (16)
O20.0399 (14)0.092 (2)0.0886 (19)0.0111 (16)0.0020 (13)0.0267 (19)
C10.044 (2)0.061 (2)0.057 (2)0.001 (2)0.0190 (16)0.017 (2)
C20.0416 (19)0.060 (2)0.0460 (19)0.0056 (19)0.0126 (15)0.001 (2)
C30.0413 (19)0.060 (2)0.0483 (19)0.002 (2)0.0097 (15)0.012 (2)
C40.0395 (19)0.061 (2)0.056 (2)0.004 (2)0.0099 (15)0.009 (2)
C50.0320 (18)0.050 (2)0.0437 (18)0.0007 (17)0.0128 (14)0.0062 (19)
C60.045 (2)0.108 (4)0.080 (3)0.017 (3)0.0029 (19)0.024 (3)
C70.0380 (19)0.046 (2)0.0433 (18)0.0042 (17)0.0124 (14)0.0072 (18)
C80.050 (2)0.054 (2)0.055 (2)0.001 (2)0.0078 (17)0.003 (2)
C90.061 (3)0.080 (3)0.067 (3)0.002 (3)0.005 (2)0.003 (3)
C100.092 (3)0.068 (3)0.051 (2)0.005 (3)0.001 (2)0.002 (2)
C110.083 (3)0.066 (3)0.051 (2)0.019 (3)0.016 (2)0.003 (2)
C120.055 (2)0.064 (3)0.051 (2)0.012 (2)0.0112 (17)0.009 (2)
Geometric parameters (Å, º) top
N1—C51.285 (4)C4—H4B0.9700
N1—O11.408 (3)C5—C71.466 (5)
O1—C11.432 (4)C5—C61.491 (5)
O2—C81.361 (4)C6—H6A0.9600
O2—H20.8200C6—H6B0.9600
C1—C21.511 (5)C6—H6C0.9600
C1—H1A0.9700C7—C81.398 (5)
C1—H1B0.9700C7—C121.404 (5)
C2—C31.514 (5)C8—C91.380 (5)
C2—H2A0.9700C9—C101.375 (6)
C2—H2B0.9700C9—H90.9300
C3—C41.518 (5)C10—C111.369 (5)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—C121.370 (5)
C4—C4i1.517 (6)C11—H110.9300
C4—H4A0.9700C12—H120.9300
C5—N1—O1113.3 (3)N1—C5—C7116.5 (3)
N1—O1—C1108.7 (3)N1—C5—C6122.8 (3)
C8—O2—H2109.5C7—C5—C6120.7 (3)
O1—C1—C2112.9 (3)C5—C6—H6A109.5
O1—C1—H1A109.0C5—C6—H6B109.5
C2—C1—H1A109.0H6A—C6—H6B109.5
O1—C1—H1B109.0C5—C6—H6C109.5
C2—C1—H1B109.0H6A—C6—H6C109.5
H1A—C1—H1B107.8H6B—C6—H6C109.5
C1—C2—C3112.1 (3)C8—C7—C12116.7 (3)
C1—C2—H2A109.2C8—C7—C5122.7 (3)
C3—C2—H2A109.2C12—C7—C5120.6 (3)
C1—C2—H2B109.2O2—C8—C9116.5 (4)
C3—C2—H2B109.2O2—C8—C7122.4 (3)
H2A—C2—H2B107.9C9—C8—C7121.0 (4)
C2—C3—C4113.6 (3)C10—C9—C8120.5 (4)
C2—C3—H3A108.8C10—C9—H9119.7
C4—C3—H3A108.8C8—C9—H9119.7
C2—C3—H3B108.8C11—C10—C9119.7 (4)
C4—C3—H3B108.8C11—C10—H10120.2
H3A—C3—H3B107.7C9—C10—H10120.2
C4i—C4—C3113.6 (4)C10—C11—C12120.3 (4)
C4i—C4—H4A108.8C10—C11—H11119.9
C3—C4—H4A108.8C12—C11—H11119.9
C4i—C4—H4B108.8C11—C12—C7121.8 (4)
C3—C4—H4B108.8C11—C12—H12119.1
H4A—C4—H4B107.7C7—C12—H12119.1
C5—N1—O1—C1178.4 (3)C12—C7—C8—O2179.6 (3)
N1—O1—C1—C272.6 (4)C5—C7—C8—O20.6 (6)
O1—C1—C2—C3173.2 (3)C12—C7—C8—C91.0 (5)
C1—C2—C3—C4175.1 (3)C5—C7—C8—C9178.8 (3)
C2—C3—C4—C4i179.2 (4)O2—C8—C9—C10180.0 (4)
O1—N1—C5—C7179.5 (3)C7—C8—C9—C100.6 (6)
O1—N1—C5—C61.6 (5)C8—C9—C10—C110.1 (6)
N1—C5—C7—C82.0 (5)C9—C10—C11—C120.4 (6)
C6—C5—C7—C8176.0 (4)C10—C11—C12—C70.0 (6)
N1—C5—C7—C12178.2 (3)C8—C7—C12—C110.7 (5)
C6—C5—C7—C123.8 (5)C5—C7—C12—C11179.1 (4)
Symmetry code: (i) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.842.558 (4)145
C12—H12···O2ii0.932.643.544 (5)164
Symmetry code: (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC24H32N2O4
Mr412.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.9524 (12), 4.6667 (6), 37.722 (3)
β (°) 99.379 (2)
V3)2249.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.48 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5371, 1979, 1172
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.173, 1.11
No. of reflections1979
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.842.558 (4)145.2
C12—H12···O2i0.932.643.544 (5)164.0
Symmetry code: (i) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904–11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationAkine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDong, W. K., He, X. N., Yan, H. B., Lv, Z. W., Chen, X. W. K., Zhao, C. Y. & Tang, X. L. (2009). Polyhedron, 28, 1419–1428.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., He, X.-N., Zhong, J.-K., Chen, X. & Yu, T.-Z. (2008). Acta Cryst. E64, o1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009). Inorg. Chim. Acta, 362, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009). Inorg. Chem. Commun. 12, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtemadi, B., Kia, R., Sharghi, H. & Hosseini Sarvari, M. (2009). Acta Cryst. E65, o1309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds