metal-organic compounds
catena-Poly[bis(4-aminopyridinium) [[tetraaquanickel(II)]-μ-benzene-1,2,4,5-tetracarboxylato] dihydrate]
aDipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá di Messina, Salita Sperone, 31-98166 Messina, Italy
*Correspondence e-mail: arotondo@unime.it
The 5H7N2)2[Ni(C10H2O8)(H2O)4]·2H2O}n, contains an NiII atom, two water molecules of coordination, one half of a benzene-1,2,4,5-tetracarboxylate (btec) anionic ligand, one 4-aminopyridinium cation (papy) and an uncoordinated water molecule. The metal center lies on an inversion center and adopts an octahedral geometry with the carboxylate groups tilted out of the mean plane formed by the btec. In the crystal, molecules are linked into one-dimensional coordination polymers running along the ac diagonal. The is consolidated by N—H⋯O and O—H⋯O hydrogen bonds.
of the title compound, {(CRelated literature
For background to 1,2,4,5-benzene-tetracarboxylate, see: Du et al. (2007); Fang et al. (2008); Loiseau et al. (2005); Ruiz-Pérez et al. (2004); Stephenson & Hardie (2006); Wang et al. (2005). For related structures, see: Majumder et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536809034746/pv2183sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034746/pv2183Isup2.hkl
An aqueous solution of disodium-dihydrogen 1,2,4,5-benzene tetracarboxylate (25 mmol) was slowly added to an equimolar aqueous solution of NiCl2 (50 mmol). Then an equimolar aqueous solution of p-aminopyridine was added to the mixture. The clear green solution at pH = 5.15 was left covered. After few days a white solid was separed from two different kind of green crystals. The rhomboidal-shaped crystals are under study (Bruno & Rotondo, to be pubblished), whereas the block-shaped ones were identified as I.
All hydrogen atoms were located in the difference map and were included in the refinements at geometrically idealized positions in the 'riding mode' with distances O–H, N–H and C–H fixed at 0.85, 0.86 and 0.93 Å, respectively, with temperature factors Uiso(H) = 1.2 Ueq(C/N) and 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).Fig. 1. ORTEP view of I. Displacement ellipsoids are drawn at the 60% probability level. Symmetry codes for the dotted atoms: * -x, -y, -z + 2 and # -x + 1, -y + 1, -z + 2. | |
Fig. 2. Molecular packing view of I along the diagonal of a and b axes. The crowded hydrogen bonding network is represented by dotted lines. |
(C5H7N2)2[Ni(C10H2O8)(H2O)4]·2H2O | Z = 1 |
Mr = 607.17 | F(000) = 316 |
Triclinic, P1 | Dx = 1.666 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2115 (1) Å | Cell parameters from 9901 reflections |
b = 9.3470 (1) Å | θ = 2.4–31.7° |
c = 10.6322 (2) Å | µ = 0.88 mm−1 |
α = 112.720 (1)° | T = 296 K |
β = 108.830 (1)° | Block, green |
γ = 95.582 (1)° | 0.5 × 0.34 × 0.27 mm |
V = 605.13 (2) Å3 |
Bruker APEXII CCD diffractometer | 2219 independent reflections |
Graphite monochromator | 2203 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.023 |
ϕ and ω scans | θmax = 25.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −8→8 |
Tmin = 0.729, Tmax = 0.785 | k = −11→11 |
14068 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0286P)2 + 0.2508P] where P = (Fo2 + 2Fc2)/3 |
2219 reflections | (Δ/σ)max = 0.001 |
187 parameters | Δρmax = 0.3 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
(C5H7N2)2[Ni(C10H2O8)(H2O)4]·2H2O | γ = 95.582 (1)° |
Mr = 607.17 | V = 605.13 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.2115 (1) Å | Mo Kα radiation |
b = 9.3470 (1) Å | µ = 0.88 mm−1 |
c = 10.6322 (2) Å | T = 296 K |
α = 112.720 (1)° | 0.5 × 0.34 × 0.27 mm |
β = 108.830 (1)° |
Bruker APEXII CCD diffractometer | 2219 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2203 reflections with I > 2σ(I) |
Tmin = 0.729, Tmax = 0.785 | Rint = 0.023 |
14068 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.3 e Å−3 |
2219 reflections | Δρmin = −0.26 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0 | 0 | 1 | 0.01722 (8) | |
C1 | 0.42401 (18) | 0.39111 (14) | 1.04216 (14) | 0.0178 (2) | |
C2 | 0.43069 (18) | 0.33541 (15) | 0.90138 (14) | 0.0180 (2) | |
C3 | 0.50542 (18) | 0.44605 (15) | 0.86090 (14) | 0.0188 (3) | |
H3 | 0.5083 | 0.4106 | 0.7671 | 0.023* | |
C4 | 0.32515 (19) | 0.28168 (14) | 1.08810 (14) | 0.0186 (3) | |
C5 | 0.36527 (19) | 0.15800 (15) | 0.79578 (14) | 0.0210 (3) | |
O1 | 0.14545 (13) | 0.20052 (10) | 1.00054 (10) | 0.02033 (19) | |
O2 | 0.42075 (15) | 0.28245 (12) | 1.20874 (11) | 0.0319 (2) | |
O3 | 0.2586 (2) | 0.11600 (13) | 0.66391 (12) | 0.0458 (3) | |
O4 | 0.42488 (15) | 0.06463 (11) | 0.84885 (11) | 0.0282 (2) | |
N6 | 0.9034 (2) | 0.28646 (18) | 1.77371 (15) | 0.0397 (3) | |
H6 | 0.9397 | 0.244 | 1.8336 | 0.048* | |
C7 | 0.9976 (2) | 0.4382 (2) | 1.81496 (17) | 0.0379 (4) | |
H7 | 1.1004 | 0.4962 | 1.9087 | 0.046* | |
C8 | 0.9467 (2) | 0.50850 (18) | 1.72376 (16) | 0.0318 (3) | |
H8 | 1.0126 | 0.6143 | 1.7554 | 0.038* | |
C9 | 0.7933 (2) | 0.42135 (17) | 1.58003 (15) | 0.0263 (3) | |
C10 | 0.6936 (2) | 0.26379 (18) | 1.54195 (17) | 0.0323 (3) | |
H10 | 0.5874 | 0.2034 | 1.4502 | 0.039* | |
C11 | 0.7530 (3) | 0.2008 (2) | 1.6396 (2) | 0.0385 (4) | |
H11 | 0.6883 | 0.0963 | 1.6131 | 0.046* | |
N12 | 0.7487 (2) | 0.48454 (16) | 1.48525 (14) | 0.0366 (3) | |
H12A | 0.8135 | 0.5801 | 1.5109 | 0.044* | |
H12B | 0.6549 | 0.43 | 1.3981 | 0.044* | |
O1W | 0.18379 (14) | 0.05465 (11) | 1.21508 (10) | 0.0249 (2) | |
H1WA | 0.2767 | 0.1294 | 1.2294 | 0.037* | |
H1WB | 0.1353 | 0.0931 | 1.2806 | 0.037* | |
O2W | −0.21078 (14) | 0.11312 (11) | 1.06521 (11) | 0.0250 (2) | |
H2WA | −0.2557 | 0.0702 | 1.1104 | 0.038* | |
H2WB | −0.3121 | 0.1088 | 0.9937 | 0.038* | |
O3W | 0.05029 (18) | 0.17265 (13) | 0.43489 (12) | 0.0358 (3) | |
H3WA | 0.1248 | 0.1693 | 0.5134 | 0.054* | |
H3WB | −0.0649 | 0.1083 | 0.4016 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01682 (13) | 0.01646 (12) | 0.01797 (13) | −0.00033 (9) | 0.00487 (9) | 0.00990 (9) |
C1 | 0.0150 (6) | 0.0182 (6) | 0.0194 (6) | 0.0003 (5) | 0.0045 (5) | 0.0102 (5) |
C2 | 0.0159 (6) | 0.0171 (6) | 0.0190 (6) | 0.0011 (5) | 0.0046 (5) | 0.0085 (5) |
C3 | 0.0188 (6) | 0.0199 (6) | 0.0172 (6) | 0.0013 (5) | 0.0067 (5) | 0.0088 (5) |
C4 | 0.0212 (6) | 0.0155 (6) | 0.0190 (6) | 0.0018 (5) | 0.0079 (5) | 0.0082 (5) |
C5 | 0.0220 (6) | 0.0179 (6) | 0.0217 (6) | 0.0010 (5) | 0.0090 (5) | 0.0079 (5) |
O1 | 0.0182 (4) | 0.0195 (4) | 0.0217 (4) | −0.0017 (3) | 0.0049 (4) | 0.0115 (4) |
O2 | 0.0300 (5) | 0.0348 (6) | 0.0243 (5) | −0.0091 (4) | −0.0002 (4) | 0.0193 (4) |
O3 | 0.0665 (8) | 0.0240 (5) | 0.0223 (5) | 0.0006 (5) | −0.0037 (5) | 0.0059 (4) |
O4 | 0.0328 (5) | 0.0210 (5) | 0.0337 (5) | 0.0077 (4) | 0.0129 (4) | 0.0150 (4) |
N6 | 0.0492 (8) | 0.0541 (9) | 0.0376 (8) | 0.0307 (7) | 0.0234 (7) | 0.0323 (7) |
C7 | 0.0351 (8) | 0.0506 (10) | 0.0244 (7) | 0.0195 (7) | 0.0084 (6) | 0.0136 (7) |
C8 | 0.0294 (8) | 0.0299 (7) | 0.0264 (7) | 0.0065 (6) | 0.0061 (6) | 0.0073 (6) |
C9 | 0.0253 (7) | 0.0269 (7) | 0.0251 (7) | 0.0072 (6) | 0.0084 (6) | 0.0111 (6) |
C10 | 0.0324 (8) | 0.0284 (7) | 0.0303 (8) | 0.0030 (6) | 0.0082 (6) | 0.0120 (6) |
C11 | 0.0470 (10) | 0.0332 (8) | 0.0481 (10) | 0.0153 (7) | 0.0256 (8) | 0.0239 (7) |
N12 | 0.0378 (7) | 0.0321 (7) | 0.0301 (7) | −0.0024 (6) | −0.0001 (6) | 0.0176 (6) |
O1W | 0.0239 (5) | 0.0274 (5) | 0.0216 (5) | −0.0017 (4) | 0.0062 (4) | 0.0132 (4) |
O2W | 0.0231 (5) | 0.0244 (5) | 0.0301 (5) | 0.0040 (4) | 0.0106 (4) | 0.0149 (4) |
O3W | 0.0413 (6) | 0.0364 (6) | 0.0328 (6) | 0.0062 (5) | 0.0154 (5) | 0.0185 (5) |
Ni1—O1 | 2.054 (1) | N6—H6 | 0.86 |
Ni1—O1i | 2.054 (1) | C7—C8 | 1.347 (2) |
Ni1—O1W | 2.063 (1) | C7—H7 | 0.93 |
Ni1—O1Wi | 2.063 (1) | C8—C9 | 1.412 (2) |
Ni1—O2Wi | 2.082 (1) | C8—H8 | 0.93 |
Ni1—O2W | 2.082 (1) | C9—N12 | 1.3249 (19) |
C1—C3ii | 1.3917 (18) | C9—C10 | 1.413 (2) |
C1—C2 | 1.4012 (18) | C10—C11 | 1.357 (2) |
C1—C4 | 1.5040 (16) | C10—H10 | 0.93 |
C2—C3 | 1.3894 (17) | C11—H11 | 0.93 |
C2—C5 | 1.5168 (17) | N12—H12A | 0.86 |
C3—C1ii | 1.3917 (18) | N12—H12B | 0.86 |
C3—H3 | 0.93 | O1W—H1WA | 0.8491 |
C4—O2 | 1.2416 (16) | O1W—H1WB | 0.8517 |
C4—O1 | 1.2673 (16) | O2W—H2WA | 0.8491 |
C5—O3 | 1.2376 (17) | O2W—H2WB | 0.8517 |
C5—O4 | 1.2496 (17) | O3W—H3WA | 0.8491 |
N6—C11 | 1.342 (2) | O3W—H3WB | 0.8517 |
N6—C7 | 1.344 (2) | ||
O1—Ni1—O1i | 180 | C4—O1—Ni1 | 124.64 (8) |
O1—Ni1—O1W | 94.96 (4) | C11—N6—C7 | 120.39 (14) |
O1i—Ni1—O1W | 85.04 (4) | C11—N6—H6 | 119.8 |
O1—Ni1—O1Wi | 85.04 (4) | C7—N6—H6 | 119.8 |
O1i—Ni1—O1Wi | 94.96 (4) | N6—C7—C8 | 121.61 (15) |
O1W—Ni1—O1Wi | 180 | N6—C7—H7 | 119.2 |
O1—Ni1—O2Wi | 87.65 (4) | C8—C7—H7 | 119.2 |
O1i—Ni1—O2Wi | 92.35 (4) | C7—C8—C9 | 119.94 (15) |
O1W—Ni1—O2Wi | 87.40 (4) | C7—C8—H8 | 120 |
O1Wi—Ni1—O2Wi | 92.60 (4) | C9—C8—H8 | 120 |
O1—Ni1—O2W | 92.35 (4) | N12—C9—C8 | 121.08 (14) |
O1i—Ni1—O2W | 87.65 (4) | N12—C9—C10 | 122.01 (13) |
O1W—Ni1—O2W | 92.60 (4) | C8—C9—C10 | 116.90 (13) |
O1Wi—Ni1—O2W | 87.40 (4) | C11—C10—C9 | 119.85 (15) |
O2Wi—Ni1—O2W | 180 | C11—C10—H10 | 120.1 |
C3ii—C1—C2 | 120.00 (11) | C9—C10—H10 | 120.1 |
C3ii—C1—C4 | 118.01 (11) | N6—C11—C10 | 121.24 (15) |
C2—C1—C4 | 121.77 (11) | N6—C11—H11 | 119.4 |
C3—C2—C1 | 118.62 (11) | C10—C11—H11 | 119.4 |
C3—C2—C5 | 119.85 (11) | C9—N12—H12A | 120 |
C1—C2—C5 | 121.49 (11) | C9—N12—H12B | 120 |
C2—C3—C1ii | 121.37 (12) | H12A—N12—H12B | 120 |
C2—C3—H3 | 119.3 | Ni1—O1W—H1WA | 98.6 |
C1ii—C3—H3 | 119.3 | Ni1—O1W—H1WB | 116.7 |
O2—C4—O1 | 125.75 (11) | H1WA—O1W—H1WB | 107.6 |
O2—C4—C1 | 118.41 (11) | Ni1—O2W—H2WA | 109.6 |
O1—C4—C1 | 115.78 (11) | Ni1—O2W—H2WB | 114 |
O3—C5—O4 | 124.70 (12) | H2WA—O2W—H2WB | 107.6 |
O3—C5—C2 | 118.15 (12) | H3WA—O3W—H3WB | 107.6 |
O4—C5—C2 | 117.15 (11) | ||
C3ii—C1—C2—C3 | −1.1 (2) | O2—C4—O1—Ni1 | −20.66 (18) |
C4—C1—C2—C3 | 173.38 (11) | C1—C4—O1—Ni1 | 162.24 (8) |
C3ii—C1—C2—C5 | 176.81 (11) | O1W—Ni1—O1—C4 | 21.65 (10) |
C4—C1—C2—C5 | −8.73 (18) | O1Wi—Ni1—O1—C4 | −158.35 (10) |
C1—C2—C3—C1ii | 1.1 (2) | O2Wi—Ni1—O1—C4 | −65.53 (10) |
C5—C2—C3—C1ii | −176.83 (11) | O2W—Ni1—O1—C4 | 114.47 (10) |
C3ii—C1—C4—O2 | −54.95 (17) | C11—N6—C7—C8 | −0.7 (2) |
C2—C1—C4—O2 | 130.48 (13) | N6—C7—C8—C9 | −1.1 (2) |
C3ii—C1—C4—O1 | 122.37 (13) | C7—C8—C9—N12 | −176.02 (14) |
C2—C1—C4—O1 | −52.20 (16) | C7—C8—C9—C10 | 2.8 (2) |
C3—C2—C5—O3 | −45.83 (18) | N12—C9—C10—C11 | 175.97 (15) |
C1—C2—C5—O3 | 136.30 (14) | C8—C9—C10—C11 | −2.9 (2) |
C3—C2—C5—O4 | 133.70 (13) | C7—N6—C11—C10 | 0.7 (2) |
C1—C2—C5—O4 | −44.16 (17) | C9—C10—C11—N6 | 1.2 (2) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···O1iii | 0.86 | 2.12 | 2.926 (1) | 156 |
N12—H12B···O2 | 0.86 | 2.00 | 2.856 (2) | 171 |
N12—H12A···O3Wii | 0.86 | 2.19 | 3.048 (2) | 174 |
O1W—H1WA···O2 | 0.85 | 1.81 | 2.634 (1) | 163 |
O1W—H1WB···O3Wiv | 0.85 | 1.85 | 2.697 (1) | 175 |
O2W—H2WA···O4i | 0.85 | 1.93 | 2.750 (1) | 162 |
O2W—H2WB···O4v | 0.85 | 1.90 | 2.732 (1) | 165 |
O3W—H3WA···O3 | 0.85 | 1.86 | 2.694 (2) | 168 |
O3W—H3WB···O3vi | 0.85 | 2.12 | 2.911 (2) | 154 |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x−1, y, z; (vi) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C5H7N2)2[Ni(C10H2O8)(H2O)4]·2H2O |
Mr | 607.17 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.2115 (1), 9.3470 (1), 10.6322 (2) |
α, β, γ (°) | 112.720 (1), 108.830 (1), 95.582 (1) |
V (Å3) | 605.13 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.88 |
Crystal size (mm) | 0.5 × 0.34 × 0.27 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.729, 0.785 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14068, 2219, 2203 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.055, 1.07 |
No. of reflections | 2219 |
No. of parameters | 187 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.3, −0.26 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···O1i | 0.86 | 2.12 | 2.926 (1) | 156 |
N12—H12B···O2 | 0.86 | 2.00 | 2.856 (2) | 171 |
N12—H12A···O3Wii | 0.86 | 2.19 | 3.048 (2) | 174 |
O1W—H1WA···O2 | 0.85 | 1.81 | 2.634 (1) | 163 |
O1W—H1WB···O3Wiii | 0.85 | 1.85 | 2.697 (1) | 175 |
O2W—H2WA···O4iv | 0.85 | 1.93 | 2.750 (1) | 162 |
O2W—H2WB···O4v | 0.85 | 1.90 | 2.732 (1) | 165 |
O3W—H3WA···O3 | 0.85 | 1.86 | 2.694 (2) | 168 |
O3W—H3WB···O3vi | 0.85 | 2.12 | 2.911 (2) | 154 |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, −y+1, −z+2; (iii) x, y, z+1; (iv) −x, −y, −z+2; (v) x−1, y, z; (vi) −x, −y, −z+1. |
Acknowledgements
We are grateful to the Centro Interdipartimentale per la Diffrazione dei Raggi X in Messina
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Du, Z.-X., Li, J.-X., Zhang, G.-Y. & Hou, H.-W. (2007). Z. Kristallogr. 222, 107–108. CAS Google Scholar
Fang, Q., Zhu, G., Xue, M., Wang, Z., Sun, J. & Qiu, S. (2008). Cryst. Growth Des. 8, 319–329. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Loiseau, T., Muguerra, H., Haouas, M., Taulelle, F. & Férey, G. (2005). Solid State Sci. 7, 603–609. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Majumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., El Fallah, M. S., Ribas, J., Sutter, J.-P., Desplanches, C. & Mitra, S. (2006). Cryst. Growth Des. 6, 2355–2368. Web of Science CSD CrossRef CAS Google Scholar
Ruiz-Pérez, C., Lorenzo-Luis, P., Hernández-Molina, M., Laz, M. M., Delgado, F. S., Gili, P. & Julve, M. (2004). Eur. J. Inorg. Chem. pp. 3873–3879. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423–432. Web of Science CSD CrossRef CAS Google Scholar
Wang, P., Moorefield, C. N., Panzerc, M. & Newkome, G. R. (2005). Chem. Commun. pp. 465–467. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 1,2,4,5-benzene-tetracarboxylate (btec) is assessed to be a very versatile ligand able to achieve several coordination modes with different degrees of deprotonation (Du et al. 2007). The specific features of btec prompted researchers to explore different possible coordination polymers bearing specific features (Loiseau et al. 2005; Ruiz-Pérez et al. 2004), expecially in the presence of amines acting as ligands (Stephenson & Hardie, 2006; Wang et al. 2005) and as templates (Fang et al. 2008). Our attempts confirmed that the combination under standard conditins around pH 5 of btec, amines and metals, strictly depended on metals but also on the ancillary amines (yet to be published). The combination of equimolar solutions of nickel chloride, p-aminopyridine and di sodium dihydrogen btec under standard conditions gave two different kinds of green crystals, the rhomboidal-shaped ones (still under study) and the block-shaped ones which were found to be made up of the title compound, (I). The structure of (I) is isomorphous with the already described Co and Cu analogous (Majumder et al., 2006).
The asymmetric unit of (I) is made by half of the metal centre with two coordinated water molecules and half btec ligand, one p-amino pyridinium cation (papy) and another uncoordinated water molecule. The metal centers present the octahedral coordination geometry, whereas carboxylate moieties are tilted out of the btec mean plane in order to develop specific inter-strand and intrastrand hydrogen bonding interactions. The crystallographic symmmetry results in monodimensional coordination polymers running along the diagonal of a and b crystallographic axes. These polymers are kept together by arrays of hydrogen bound papy cations (Fig. 2). The overal paking is obviously stabilized by a crowded hydrogen bonding network (Table 1).