organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-eth­oxy­phen­yl)triazene methanol 0.33-solvate

aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and cYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: attar_jafar@yahoo.com

(Received 25 July 2009; accepted 1 September 2009; online 9 September 2009)

There are three independent mol­ecules of 1,3-bis­(2-ethoxy­phen­yl)triazene and a mol­ecule of methanol in the asymmetric unit of the title compound, C16H19N3O2·0.33CH3OH. Two mol­ecules related by a non-crystallographic pseudo-twofold rotation axis are linked via distinct inter­molecular N—H⋯N hydrogen bonds, leading to the formation of a dimer with an R22(8) graph set. The third mol­ecule is connected to the methanol mol­ecule by O—H⋯N and N—H⋯O hydrogen bonds. There are a number of weak C—H⋯π inter­actions, with H⋯π distances ranging from 2.74 to 2.89 Å between the C—H groups and the aromatic benzene rings.

Related literature

For related structures, see: Rofouei et al. (2009[Rofouei, M. K., Melardi, M. R., Salemi, Y. & Kazemi, S. R. (2009). Acta Cryst. E65, o719.]); Melardi et al.(2008[Melardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x281-x282.]); Rofouei et al. (2006[Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79-x80.]). For the structural properties and metal complexes of aryl triazenes, see: Meldola et al. (1888[Meldola, R. & Streatfield, F. W. (1888). J. Chem. Soc. 61, 102-118.]); Leman et al. (1993[Leman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324-4336.]); Chen et al. (2002[Chen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem. 67, 2271-2277.]); Vrieze et al. (1987[Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry. Vol. 2, pp. 189-244. Oxford: Pergamon Press.]); Hematyar et al. (2008[Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117-x118.]); Payehghadr et al. (2007[Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792-1798.]). For hydrogen-bond patterns and graph sets, see: Grell et al. (2002[Grell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N3O2·0.33CH4O

  • Mr = 296.02

  • Triclinic, [P \overline 1]

  • a = 12.146 (3) Å

  • b = 13.640 (3) Å

  • c = 16.117 (4) Å

  • α = 71.448 (5)°

  • β = 72.827 (4)°

  • γ = 81.151 (4)°

  • V = 2413.2 (10) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.992

  • 21014 measured reflections

  • 9421 independent reflections

  • 4997 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.204

  • S = 1.00

  • 9421 reflections

  • 587 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N4 0.88 2.20 3.024 (3) 156
N6—H6N⋯N1 0.88 2.20 3.033 (3) 158
N9—H9N⋯O7 0.88 2.19 2.920 (3) 140
O7—H7O⋯N7 0.88 2.15 2.839 (3) 134
C28—H28ACg1i 0.95 2.89 3.712 (3) 146
C36—H36ACg2i 0.95 2.74 3.549 (3) 144
C15—H15ACg3ii 0.99 2.76 3.463 (3) 128
C32—H32CCg3i 0.98 2.80 3.593 (3) 138
C40—H40CCg4i 0.98 2.84 3.632 (3) 138
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z+1. Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C9–C14, C33–C38 and C25–C30 rings, respectively.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aryl triazenes have been studied over 130 years for their interesting structural, anticancer, and reactivity properties. The first extensive investigation of the coordination chemistry of a triazene derivative (1,3-diphenyltriazene) was carried out in 1887 by Meldola (Meldola et al., 1888). In the intervening years, numerous transition metal triazenide compounds have been studied (Liman, et al., 1993). Triazene compounds characterized by having a diazoamino group commonly adopt a trans configuration in the ground state (Chen et al., 2002). The study of transition metal complexes containing 1,3-diaryltriazenide [RNN—NR] ligands has increased greatly in the past few years, because of their potential reactivity in relation to their several coordination modes (Vrieze, et al., 1987). We have recently reported the synthesis and characterization of three 1,3-bis derivatives of triazene (Melardi et al., 2008; Rofouei et al., 2006; Rofouei et al., 2009).

The title structure contains three molecules of C16H19N3O2 and a molecule of CH3OH in an asymmetric unit (Fig. 1). It is similar to our recently published article, C16H19N3O2, [Rofouei, et al., 2009] and only differs in one methanol molecule as solvent. All the three molecules A, B and C show trans stereo chemistry for the NN double bond. The torsion angles C1—N1—N2—N3, C17—N4—N5—N6 and C33—N7—N8—N9 are -177.34 (17), 179.42 (16) and 177.30 (16)°, respectively. The N1—N2, N2—N3, N4—N5, N5—N6, N7—N8 and N8—N9 bond distances are 1.291 (2), 1.308 (3), 1.298 (2), 1.304 (3), 1.276 (3) and 1.328 (2) Å, respectively which are in good agreement with the reported data for N—N and NN bond distances (Hematyar, et al., 2008; Payehghadr, et al., 2007; Melardi, et al., 2008).

The molecule A is almost planar, but the other two molecules (B and C) are somewhat twisted with respect to the phenyl rings. Two interlocked molecules (A and B) are connected by two distinct classic N—H···N hydrogen bonds with D···A of 3.024 (3) and 3.033 (3) Å and are related by a non-crystallographic pseudo twofold rotation axis. The N—H···N hydrogen bonds lead to the formation of a dimer with an R22(8) graph set geometry (Grell, et al., 2002). The steric demand of the ethoxy groups in the ortho position prevents a co-planar arrangement of the two molecules in the dimer which instead consists of two interlocked molecules. The third molecule (C) is connected to a methanol molecule by two O7—H7O···N7 and N9—H9N···O7 hydrogen bonds forming a six membered ring with an R22(6) graph set geometry (Grell, et al., 2002). Hydrogen bond geometries are shown in Table 1.

Also, there are several interesting weak C—H···π interactions between CH groups with aromatic phenyl rings with H···π distances ranging from 2.74 Å to 2.89 Å (Fig. 2). The unit cell packing of the title compound is presented in Fig. 3.

Related literature top

For related structures, see: Rofouei et al. (2009); Melardi et al.(2008); Rofouei et al. (2006). For the structural properties and metal complexes of aryl triazenes, see: Meldola et al. (1888); Leman et al. (1993); Chen et al. (2002); Vrieze et al. (1987); Hematyar et al. (2008); Payehghadr et al. (2007). For hydrogen-bond patterns and graph sets, see: Grell et al. (2002).

Experimental top

A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 K in an ice-bath. To this was added 10 mmol (1.37 g) of o–phenetidin and 13 mmol of hydrochloric acid (37%) followed by a solution containing NaNO2 6 mmol (0.41 g) in 25 ml of water during a 15 min period. After mixing for 15 min a solution containing 180 mmol (14.76 g) of sodium acetate in 45 ml of water was added. After mixing for 45 min the brown product was filtered and dissolved in Et2O, and was crystallized at 263 K. Recrystallization from methanol afforded the title compound as an orange crystalline material.

Refinement top

The hydrogen atoms bonded to N and O were found from difference Fourier synthesis. All hydrogen atoms were included in the refinement at geometrically idealized positions in isotropic approximation in riding mode with distances: N/O–H = 0.88 Å, C–H = 0.95 (aryl), 0.98 (methyl), 0.99 (methylene) Å and Uiso(H) equal to 1.5Ueq(C) for methyl groups and 1.2Ueq(N/O and methylene C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with thermal elliposids drawn at 50% probability level. Only hydrogen atoms involved in the hydrogen bonding are shown.
[Figure 2] Fig. 2. Weak C—H···π interactions between C–H groups with aromatic phenyl rings with with H···π distances ranging from 2.74 Å to 2.89 Å.
[Figure 3] Fig. 3. Unit cell packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1,3-Bis(2-ethoxyphenyl)triazene methanol 0.33-solvate top
Crystal data top
C16H19N3O2·0.33CH4OZ = 6
Mr = 296.02F(000) = 948
Triclinic, P1Dx = 1.222 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.146 (3) ÅCell parameters from 2921 reflections
b = 13.640 (3) Åθ = 2.4–24.6°
c = 16.117 (4) ŵ = 0.08 mm1
α = 71.448 (5)°T = 120 K
β = 72.827 (4)°Prism, orange
γ = 81.151 (4)°0.30 × 0.20 × 0.10 mm
V = 2413.2 (10) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
9421 independent reflections
Radiation source: fine-focus sealed tube4997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1414
Tmin = 0.978, Tmax = 0.992k = 1616
21014 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: difference Fourier map
wR(F2) = 0.204H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.07P)2 + 2P]
where P = (Fo2 + 2Fc2)/3
9421 reflections(Δ/σ)max < 0.001
587 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H19N3O2·0.33CH4Oγ = 81.151 (4)°
Mr = 296.02V = 2413.2 (10) Å3
Triclinic, P1Z = 6
a = 12.146 (3) ÅMo Kα radiation
b = 13.640 (3) ŵ = 0.08 mm1
c = 16.117 (4) ÅT = 120 K
α = 71.448 (5)°0.30 × 0.20 × 0.10 mm
β = 72.827 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
9421 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4997 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.992Rint = 0.048
21014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
9421 reflectionsΔρmin = 0.30 e Å3
587 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31967 (13)0.24889 (12)0.40953 (10)0.0360 (4)
O20.00977 (12)0.23580 (12)0.82111 (10)0.0334 (4)
N10.12742 (15)0.19444 (14)0.53596 (12)0.0312 (5)
N20.03282 (15)0.16622 (14)0.59722 (12)0.0289 (5)
N30.02050 (15)0.19607 (14)0.66913 (12)0.0314 (5)
H3N0.07250.23230.67220.038*
C10.14480 (18)0.16900 (16)0.45427 (14)0.0272 (5)
C20.24629 (18)0.20179 (16)0.38631 (15)0.0296 (6)
C30.26635 (19)0.18578 (17)0.30162 (15)0.0322 (6)
H3A0.33350.20990.25490.039*
C40.18748 (19)0.13438 (17)0.28613 (15)0.0344 (6)
H4A0.20170.12240.22880.041*
C50.08808 (19)0.10025 (18)0.35339 (15)0.0342 (6)
H5A0.03490.06460.34250.041*
C60.06734 (18)0.11877 (17)0.43658 (15)0.0303 (6)
H6A0.00130.09660.48230.036*
C70.41398 (19)0.29920 (19)0.33826 (16)0.0372 (6)
H7A0.38450.35250.29030.045*
H7B0.46600.24800.31070.045*
C80.4776 (2)0.3482 (2)0.37950 (18)0.0545 (8)
H8A0.54270.38330.33250.082*
H8B0.50650.29470.42670.082*
H8C0.42530.39880.40640.082*
C90.07846 (17)0.16844 (16)0.74147 (14)0.0265 (5)
C100.08259 (18)0.18916 (16)0.82198 (14)0.0277 (5)
C110.17676 (19)0.15921 (17)0.89794 (15)0.0322 (6)
H11A0.17970.17190.95320.039*
C120.26562 (18)0.11094 (17)0.89177 (15)0.0330 (6)
H12A0.32960.09090.94300.040*
C130.26151 (18)0.09184 (17)0.81164 (15)0.0322 (6)
H13A0.32260.05880.80800.039*
C140.16852 (18)0.12082 (17)0.73660 (15)0.0308 (6)
H14A0.16640.10800.68150.037*
C150.0103 (2)0.25548 (18)0.90324 (15)0.0354 (6)
H15A0.00890.18950.95240.043*
H15B0.05860.30040.92230.043*
C160.1185 (2)0.3083 (2)0.88496 (17)0.0480 (7)
H16A0.12100.32270.94020.072*
H16B0.11890.37350.83640.072*
H16C0.18610.26310.86640.072*
O30.03481 (12)0.44284 (12)0.63303 (11)0.0377 (4)
O40.33503 (12)0.04227 (11)0.62005 (11)0.0346 (4)
N40.17838 (15)0.36547 (13)0.63042 (12)0.0297 (5)
N50.28253 (15)0.32739 (13)0.63278 (12)0.0286 (5)
N60.30570 (15)0.23841 (13)0.61518 (12)0.0306 (5)
H6N0.25310.20950.60470.037*
C170.14665 (18)0.46114 (16)0.64961 (14)0.0282 (5)
C180.03205 (18)0.50163 (17)0.65099 (15)0.0309 (6)
C190.0048 (2)0.59563 (18)0.66942 (16)0.0387 (7)
H19A0.08150.62370.66970.046*
C200.0692 (2)0.64865 (18)0.68742 (18)0.0435 (7)
H20A0.04260.71240.70110.052*
C210.1819 (2)0.60992 (18)0.68580 (17)0.0424 (7)
H21A0.23240.64700.69800.051*
C220.2204 (2)0.51652 (17)0.66619 (15)0.0334 (6)
H22A0.29800.49030.66410.040*
C230.13987 (19)0.4905 (2)0.60961 (16)0.0402 (7)
H23A0.12350.55310.55690.048*
H23B0.19460.51130.66130.048*
C240.1903 (2)0.4117 (2)0.58680 (17)0.0464 (7)
H24A0.26240.44140.57040.070*
H24B0.20610.35030.63950.070*
H24C0.13540.39190.53560.070*
C250.41736 (17)0.18971 (16)0.61329 (14)0.0264 (5)
C260.43230 (18)0.08528 (16)0.61546 (14)0.0278 (5)
C270.54021 (19)0.03263 (18)0.61434 (15)0.0329 (6)
H27A0.55040.03860.61690.039*
C280.63264 (19)0.08407 (18)0.60955 (15)0.0344 (6)
H28A0.70620.04790.60820.041*
C290.61904 (19)0.18722 (18)0.60672 (15)0.0349 (6)
H29A0.68290.22200.60340.042*
C300.51106 (18)0.24000 (17)0.60880 (14)0.0310 (6)
H30A0.50140.31100.60710.037*
C310.34302 (19)0.06530 (16)0.62645 (15)0.0316 (6)
H31A0.36180.10770.68360.038*
H31B0.40430.08000.57490.038*
C320.2277 (2)0.09031 (18)0.62455 (17)0.0388 (6)
H32A0.22990.16380.62880.058*
H32B0.21010.04790.56770.058*
H32C0.16780.07550.67590.058*
O50.70638 (12)0.06592 (11)0.13410 (10)0.0317 (4)
O60.36080 (12)0.48301 (12)0.11751 (11)0.0362 (4)
N70.68644 (15)0.26576 (14)0.11614 (12)0.0294 (5)
N80.67007 (15)0.35282 (14)0.13324 (12)0.0293 (5)
N90.57197 (15)0.40407 (13)0.11906 (12)0.0307 (5)
H9N0.52980.38090.09420.037*
C330.79371 (18)0.21153 (16)0.12693 (14)0.0259 (5)
C340.80398 (18)0.10554 (16)0.13416 (14)0.0277 (5)
C350.90725 (19)0.04810 (17)0.14109 (15)0.0318 (6)
H35A0.91460.02360.14550.038*
C361.00003 (19)0.09627 (18)0.14159 (15)0.0348 (6)
H36A1.07080.05690.14620.042*
C370.99072 (19)0.20022 (18)0.13548 (15)0.0333 (6)
H37A1.05460.23210.13610.040*
C380.88745 (18)0.25806 (17)0.12842 (14)0.0304 (6)
H38A0.88060.32960.12460.036*
C390.7134 (2)0.04229 (17)0.14138 (16)0.0354 (6)
H39A0.73550.08440.19730.043*
H39B0.77170.05730.08850.043*
C400.5947 (2)0.06709 (19)0.14433 (17)0.0426 (7)
H40A0.59550.14070.14930.064*
H40B0.57400.02490.08870.064*
H40C0.53800.05180.19690.064*
C410.53667 (18)0.49534 (16)0.14432 (14)0.0282 (5)
C420.42322 (18)0.53686 (16)0.14433 (15)0.0297 (6)
C430.3816 (2)0.62422 (17)0.17383 (16)0.0364 (6)
H43A0.30510.65260.17400.044*
C440.4523 (2)0.67014 (17)0.20317 (16)0.0349 (6)
H44A0.42350.72920.22420.042*
C450.56442 (19)0.62991 (17)0.20172 (15)0.0336 (6)
H45A0.61230.66140.22170.040*
C460.60702 (19)0.54372 (16)0.17116 (15)0.0311 (6)
H46A0.68480.51770.16860.037*
C470.24610 (19)0.52416 (19)0.11158 (17)0.0386 (7)
H47A0.24880.59380.06710.046*
H47B0.19780.53020.17130.046*
C480.1965 (2)0.4504 (2)0.08185 (18)0.0491 (7)
H48A0.11810.47610.07710.074*
H48B0.19430.38180.12650.074*
H48C0.24500.44520.02270.074*
O70.46759 (14)0.23487 (14)0.10190 (12)0.0507 (5)
H7O0.54060.21230.09670.061*
C490.4211 (2)0.2023 (2)0.04551 (18)0.0534 (8)
H49A0.47240.21900.01610.080*
H49B0.34480.23790.04430.080*
H49C0.41370.12730.06900.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0283 (8)0.0449 (9)0.0346 (8)0.0153 (7)0.0055 (7)0.0076 (7)
O20.0295 (8)0.0445 (8)0.0306 (7)0.0119 (7)0.0058 (6)0.0146 (6)
N10.0236 (9)0.0422 (10)0.0281 (9)0.0098 (8)0.0026 (7)0.0110 (8)
N20.0233 (9)0.0320 (9)0.0301 (9)0.0036 (8)0.0045 (7)0.0087 (8)
N30.0280 (9)0.0401 (10)0.0298 (9)0.0109 (8)0.0044 (7)0.0141 (8)
C10.0267 (10)0.0265 (11)0.0284 (10)0.0023 (9)0.0084 (9)0.0067 (9)
C20.0279 (11)0.0273 (11)0.0333 (11)0.0019 (9)0.0107 (9)0.0061 (9)
C30.0244 (11)0.0377 (12)0.0319 (11)0.0000 (10)0.0070 (9)0.0079 (10)
C40.0347 (12)0.0389 (12)0.0346 (11)0.0042 (10)0.0138 (9)0.0162 (10)
C50.0295 (11)0.0355 (12)0.0426 (12)0.0009 (10)0.0144 (10)0.0143 (10)
C60.0232 (10)0.0338 (12)0.0323 (11)0.0041 (9)0.0065 (9)0.0071 (9)
C70.0265 (11)0.0391 (13)0.0384 (13)0.0083 (10)0.0054 (10)0.0009 (10)
C80.0448 (14)0.0673 (17)0.0480 (15)0.0342 (13)0.0114 (12)0.0014 (13)
C90.0215 (10)0.0261 (11)0.0304 (11)0.0017 (9)0.0076 (9)0.0056 (9)
C100.0229 (10)0.0295 (11)0.0297 (11)0.0021 (9)0.0068 (9)0.0073 (9)
C110.0321 (12)0.0359 (12)0.0271 (11)0.0017 (10)0.0067 (9)0.0082 (9)
C120.0205 (11)0.0353 (12)0.0357 (12)0.0034 (10)0.0016 (9)0.0048 (10)
C130.0210 (10)0.0343 (12)0.0384 (12)0.0047 (9)0.0077 (9)0.0053 (10)
C140.0276 (11)0.0340 (12)0.0328 (11)0.0011 (10)0.0111 (9)0.0100 (9)
C150.0391 (12)0.0416 (12)0.0296 (11)0.0075 (11)0.0096 (10)0.0130 (10)
C160.0536 (14)0.0573 (15)0.0396 (13)0.0226 (13)0.0123 (11)0.0138 (11)
O30.0254 (7)0.0351 (8)0.0549 (9)0.0009 (7)0.0170 (7)0.0115 (7)
O40.0244 (7)0.0296 (8)0.0565 (9)0.0027 (6)0.0147 (7)0.0174 (7)
N40.0237 (9)0.0265 (9)0.0413 (10)0.0005 (8)0.0109 (8)0.0121 (8)
N50.0264 (9)0.0287 (9)0.0331 (9)0.0029 (8)0.0091 (7)0.0105 (7)
N60.0246 (9)0.0318 (9)0.0428 (10)0.0024 (8)0.0128 (8)0.0169 (8)
C170.0285 (11)0.0252 (11)0.0303 (11)0.0015 (9)0.0096 (9)0.0057 (9)
C180.0276 (11)0.0306 (11)0.0337 (11)0.0051 (10)0.0091 (9)0.0056 (9)
C190.0310 (12)0.0328 (13)0.0471 (14)0.0058 (10)0.0101 (10)0.0083 (11)
C200.0476 (14)0.0275 (12)0.0586 (15)0.0040 (11)0.0169 (12)0.0173 (11)
C210.0454 (14)0.0318 (12)0.0563 (14)0.0017 (11)0.0190 (11)0.0167 (11)
C220.0309 (11)0.0267 (11)0.0450 (12)0.0008 (10)0.0140 (10)0.0103 (10)
C230.0271 (11)0.0489 (15)0.0403 (13)0.0016 (11)0.0130 (10)0.0036 (11)
C240.0311 (12)0.0602 (16)0.0468 (14)0.0024 (12)0.0165 (11)0.0086 (12)
C250.0202 (10)0.0325 (11)0.0276 (10)0.0022 (9)0.0069 (8)0.0095 (9)
C260.0255 (10)0.0300 (11)0.0315 (11)0.0014 (9)0.0111 (9)0.0105 (9)
C270.0314 (11)0.0322 (12)0.0385 (12)0.0021 (10)0.0133 (9)0.0131 (9)
C280.0223 (10)0.0445 (13)0.0405 (12)0.0034 (10)0.0130 (9)0.0159 (10)
C290.0239 (10)0.0405 (13)0.0440 (12)0.0068 (10)0.0135 (9)0.0109 (10)
C300.0289 (11)0.0334 (11)0.0368 (11)0.0043 (9)0.0128 (9)0.0138 (9)
C310.0330 (12)0.0255 (11)0.0373 (12)0.0024 (9)0.0071 (10)0.0123 (9)
C320.0396 (13)0.0343 (12)0.0462 (13)0.0080 (11)0.0119 (11)0.0136 (10)
O50.0277 (7)0.0287 (8)0.0415 (8)0.0052 (6)0.0109 (6)0.0107 (6)
O60.0265 (7)0.0356 (8)0.0526 (9)0.0013 (7)0.0171 (7)0.0152 (7)
N70.0251 (9)0.0313 (9)0.0330 (9)0.0027 (8)0.0065 (7)0.0116 (8)
N80.0263 (9)0.0283 (9)0.0324 (9)0.0016 (8)0.0075 (8)0.0078 (8)
N90.0238 (9)0.0305 (10)0.0391 (10)0.0006 (8)0.0112 (8)0.0104 (8)
C330.0245 (10)0.0299 (11)0.0261 (10)0.0031 (9)0.0079 (8)0.0100 (8)
C340.0266 (11)0.0287 (11)0.0285 (10)0.0048 (9)0.0078 (9)0.0072 (9)
C350.0316 (11)0.0284 (11)0.0378 (11)0.0005 (10)0.0110 (9)0.0121 (9)
C360.0287 (11)0.0391 (13)0.0365 (12)0.0021 (10)0.0144 (10)0.0076 (10)
C370.0262 (11)0.0395 (13)0.0367 (12)0.0067 (10)0.0104 (9)0.0101 (10)
C380.0301 (11)0.0313 (11)0.0323 (11)0.0039 (10)0.0096 (9)0.0105 (9)
C390.0400 (12)0.0249 (11)0.0419 (12)0.0087 (10)0.0118 (10)0.0062 (10)
C400.0463 (14)0.0379 (13)0.0453 (13)0.0162 (11)0.0119 (11)0.0081 (11)
C410.0272 (11)0.0253 (11)0.0295 (11)0.0038 (9)0.0065 (9)0.0044 (9)
C420.0275 (11)0.0266 (11)0.0334 (11)0.0026 (9)0.0103 (9)0.0039 (9)
C430.0289 (12)0.0308 (12)0.0464 (13)0.0012 (10)0.0090 (10)0.0094 (10)
C440.0353 (12)0.0250 (11)0.0429 (13)0.0004 (10)0.0087 (10)0.0100 (10)
C450.0324 (12)0.0269 (11)0.0424 (12)0.0043 (10)0.0116 (10)0.0084 (10)
C460.0266 (11)0.0276 (11)0.0380 (12)0.0018 (9)0.0088 (9)0.0077 (9)
C470.0249 (11)0.0469 (14)0.0429 (13)0.0008 (11)0.0116 (10)0.0106 (11)
C480.0328 (12)0.0644 (17)0.0580 (15)0.0062 (12)0.0187 (11)0.0210 (13)
O70.0327 (9)0.0655 (11)0.0647 (10)0.0042 (8)0.0145 (8)0.0315 (9)
C490.0505 (15)0.0630 (17)0.0545 (15)0.0103 (14)0.0170 (13)0.0214 (13)
Geometric parameters (Å, º) top
O1—C21.369 (3)C24—H24B0.9800
O1—C71.437 (3)C24—H24C0.9800
O2—C101.367 (3)C25—C301.390 (3)
O2—C151.434 (3)C25—C261.398 (3)
N1—N21.291 (2)C26—C271.392 (3)
N1—C11.415 (3)C27—C281.384 (3)
N2—N31.308 (3)C27—H27A0.9500
N3—C91.407 (3)C28—C291.379 (3)
N3—H3N0.8800C28—H28A0.9500
C1—C61.385 (3)C29—C301.392 (3)
C1—C21.407 (3)C29—H29A0.9500
C2—C31.395 (3)C30—H30A0.9500
C3—C41.390 (3)C31—C321.503 (3)
C3—H3A0.9500C31—H31A0.9900
C4—C51.389 (3)C31—H31B0.9900
C4—H4A0.9500C32—H32A0.9800
C5—C61.386 (3)C32—H32B0.9800
C5—H5A0.9500C32—H32C0.9800
C6—H6A0.9500O5—C341.377 (3)
C7—C81.494 (4)O5—C391.434 (3)
C7—H7A0.9900O6—C421.367 (3)
C7—H7B0.9900O6—C471.438 (3)
C8—H8A0.9800N7—N81.276 (3)
C8—H8B0.9800N7—C331.425 (3)
C8—H8C0.9800N8—N91.328 (2)
C9—C141.388 (3)N9—C411.398 (3)
C9—C101.399 (3)N9—H9N0.8800
C10—C111.404 (3)C33—C381.396 (3)
C11—C121.390 (3)C33—C341.402 (3)
C11—H11A0.9500C34—C351.387 (3)
C12—C131.382 (3)C35—C361.392 (3)
C12—H12A0.9500C35—H35A0.9500
C13—C141.386 (3)C36—C371.379 (3)
C13—H13A0.9500C36—H36A0.9500
C14—H14A0.9500C37—C381.390 (3)
C15—C161.503 (3)C37—H37A0.9500
C15—H15A0.9900C38—H38A0.9500
C15—H15B0.9900C39—C401.514 (3)
C16—H16A0.9800C39—H39A0.9900
C16—H16B0.9800C39—H39B0.9900
C16—H16C0.9800C40—H40A0.9800
O3—C181.369 (3)C40—H40B0.9800
O3—C231.438 (3)C40—H40C0.9800
O4—C261.371 (3)C41—C461.388 (3)
O4—C311.428 (3)C41—C421.407 (3)
N4—N51.298 (2)C42—C431.391 (3)
N4—C171.407 (3)C43—C441.396 (4)
N5—N61.304 (3)C43—H43A0.9500
N6—C251.412 (3)C44—C451.384 (3)
N6—H6N0.8800C44—H44A0.9500
C17—C221.387 (3)C45—C461.387 (3)
C17—C181.413 (3)C45—H45A0.9500
C18—C191.386 (3)C46—H46A0.9500
C19—C201.380 (4)C47—C481.506 (4)
C19—H19A0.9500C47—H47A0.9900
C20—C211.385 (4)C47—H47B0.9900
C20—H20A0.9500C48—H48A0.9800
C21—C221.388 (3)C48—H48B0.9800
C21—H21A0.9500C48—H48C0.9800
C22—H22A0.9500O7—C491.407 (3)
C23—C241.501 (4)O7—H7O0.8807
C23—H23A0.9900C49—H49A0.9800
C23—H23B0.9900C49—H49B0.9800
C24—H24A0.9800C49—H49C0.9800
C2—O1—C7117.58 (18)C30—C25—C26119.43 (19)
C10—O2—C15117.73 (16)C30—C25—N6123.6 (2)
N2—N1—C1115.95 (19)C26—C25—N6116.94 (19)
N1—N2—N3112.46 (18)O4—C26—C27125.0 (2)
N2—N3—C9117.88 (19)O4—C26—C25115.26 (18)
N2—N3—H3N121.1C27—C26—C25119.7 (2)
C9—N3—H3N121.1C28—C27—C26120.0 (2)
C6—C1—C2119.2 (2)C28—C27—H27A120.0
C6—C1—N1124.47 (18)C26—C27—H27A120.0
C2—C1—N1116.3 (2)C29—C28—C27120.7 (2)
O1—C2—C3124.33 (19)C29—C28—H28A119.7
O1—C2—C1115.8 (2)C27—C28—H28A119.7
C3—C2—C1119.9 (2)C28—C29—C30119.5 (2)
C4—C3—C2119.6 (2)C28—C29—H29A120.2
C4—C3—H3A120.2C30—C29—H29A120.2
C2—C3—H3A120.2C25—C30—C29120.6 (2)
C5—C4—C3120.8 (2)C25—C30—H30A119.7
C5—C4—H4A119.6C29—C30—H30A119.7
C3—C4—H4A119.6O4—C31—C32107.13 (18)
C6—C5—C4119.3 (2)O4—C31—H31A110.3
C6—C5—H5A120.4C32—C31—H31A110.3
C4—C5—H5A120.4O4—C31—H31B110.3
C1—C6—C5121.2 (2)C32—C31—H31B110.3
C1—C6—H6A119.4H31A—C31—H31B108.5
C5—C6—H6A119.4C31—C32—H32A109.5
O1—C7—C8107.4 (2)C31—C32—H32B109.5
O1—C7—H7A110.2H32A—C32—H32B109.5
C8—C7—H7A110.2C31—C32—H32C109.5
O1—C7—H7B110.2H32A—C32—H32C109.5
C8—C7—H7B110.2H32B—C32—H32C109.5
H7A—C7—H7B108.5C34—O5—C39117.07 (16)
C7—C8—H8A109.5C42—O6—C47117.96 (18)
C7—C8—H8B109.5N8—N7—C33113.74 (18)
H8A—C8—H8B109.5N7—N8—N9112.79 (19)
C7—C8—H8C109.5N8—N9—C41118.98 (19)
H8A—C8—H8C109.5N8—N9—H9N120.5
H8B—C8—H8C109.5C41—N9—H9N120.5
C14—C9—C10119.84 (19)C38—C33—C34119.4 (2)
C14—C9—N3123.3 (2)C38—C33—N7124.04 (19)
C10—C9—N3116.9 (2)C34—C33—N7116.52 (19)
O2—C10—C9116.08 (17)O5—C34—C35124.6 (2)
O2—C10—C11124.3 (2)O5—C34—C33115.34 (18)
C9—C10—C11119.6 (2)C35—C34—C33120.1 (2)
C12—C11—C10119.6 (2)C34—C35—C36119.5 (2)
C12—C11—H11A120.2C34—C35—H35A120.2
C10—C11—H11A120.2C36—C35—H35A120.2
C13—C12—C11120.4 (2)C37—C36—C35121.0 (2)
C13—C12—H12A119.8C37—C36—H36A119.5
C11—C12—H12A119.8C35—C36—H36A119.5
C12—C13—C14120.2 (2)C36—C37—C38119.7 (2)
C12—C13—H13A119.9C36—C37—H37A120.2
C14—C13—H13A119.9C38—C37—H37A120.2
C13—C14—C9120.4 (2)C37—C38—C33120.3 (2)
C13—C14—H14A119.8C37—C38—H38A119.8
C9—C14—H14A119.8C33—C38—H38A119.8
O2—C15—C16107.77 (18)O5—C39—C40106.65 (18)
O2—C15—H15A110.2O5—C39—H39A110.4
C16—C15—H15A110.2C40—C39—H39A110.4
O2—C15—H15B110.2O5—C39—H39B110.4
C16—C15—H15B110.2C40—C39—H39B110.4
H15A—C15—H15B108.5H39A—C39—H39B108.6
C15—C16—H16A109.5C39—C40—H40A109.5
C15—C16—H16B109.5C39—C40—H40B109.5
H16A—C16—H16B109.5H40A—C40—H40B109.5
C15—C16—H16C109.5C39—C40—H40C109.5
H16A—C16—H16C109.5H40A—C40—H40C109.5
H16B—C16—H16C109.5H40B—C40—H40C109.5
C18—O3—C23118.40 (18)C46—C41—N9123.0 (2)
C26—O4—C31118.17 (16)C46—C41—C42119.7 (2)
N5—N4—C17115.73 (19)N9—C41—C42117.3 (2)
N4—N5—N6112.45 (18)O6—C42—C43125.2 (2)
N5—N6—C25118.21 (19)O6—C42—C41115.1 (2)
N5—N6—H6N120.9C43—C42—C41119.6 (2)
C25—N6—H6N120.9C42—C43—C44120.0 (2)
C22—C17—N4124.1 (2)C42—C43—H43A120.0
C22—C17—C18119.4 (2)C44—C43—H43A120.0
N4—C17—C18116.5 (2)C45—C44—C43120.2 (2)
O3—C18—C19124.8 (2)C45—C44—H44A119.9
O3—C18—C17115.8 (2)C43—C44—H44A119.9
C19—C18—C17119.4 (2)C44—C45—C46120.2 (2)
C20—C19—C18120.3 (2)C44—C45—H45A119.9
C20—C19—H19A119.8C46—C45—H45A119.9
C18—C19—H19A119.8C45—C46—C41120.3 (2)
C19—C20—C21120.7 (2)C45—C46—H46A119.8
C19—C20—H20A119.6C41—C46—H46A119.8
C21—C20—H20A119.6O6—C47—C48107.2 (2)
C20—C21—C22119.6 (2)O6—C47—H47A110.3
C20—C21—H21A120.2C48—C47—H47A110.3
C22—C21—H21A120.2O6—C47—H47B110.3
C17—C22—C21120.6 (2)C48—C47—H47B110.3
C17—C22—H22A119.7H47A—C47—H47B108.5
C21—C22—H22A119.7C47—C48—H48A109.5
O3—C23—C24107.0 (2)C47—C48—H48B109.5
O3—C23—H23A110.3H48A—C48—H48B109.5
C24—C23—H23A110.3C47—C48—H48C109.5
O3—C23—H23B110.3H48A—C48—H48C109.5
C24—C23—H23B110.3H48B—C48—H48C109.5
H23A—C23—H23B108.6C49—O7—H7O111.0
C23—C24—H24A109.5O7—C49—H49A109.5
C23—C24—H24B109.5O7—C49—H49B109.5
H24A—C24—H24B109.5H49A—C49—H49B109.5
C23—C24—H24C109.5O7—C49—H49C109.5
H24A—C24—H24C109.5H49A—C49—H49C109.5
H24B—C24—H24C109.5H49B—C49—H49C109.5
C1—N1—N2—N3177.34 (17)C18—O3—C23—C24175.79 (18)
N1—N2—N3—C9178.95 (17)N5—N6—C25—C3015.0 (3)
N2—N1—C1—C61.2 (3)N5—N6—C25—C26165.52 (18)
N2—N1—C1—C2178.45 (18)C31—O4—C26—C271.6 (3)
C7—O1—C2—C310.1 (3)C31—O4—C26—C25177.33 (18)
C7—O1—C2—C1169.62 (18)C30—C25—C26—O4179.89 (19)
C6—C1—C2—O1178.68 (19)N6—C25—C26—O40.6 (3)
N1—C1—C2—O13.9 (3)C30—C25—C26—C270.9 (3)
C6—C1—C2—C31.6 (3)N6—C25—C26—C27179.60 (19)
N1—C1—C2—C3175.85 (19)O4—C26—C27—C28180.0 (2)
O1—C2—C3—C4178.2 (2)C25—C26—C27—C281.1 (3)
C1—C2—C3—C42.1 (3)C26—C27—C28—C290.6 (3)
C2—C3—C4—C51.0 (3)C27—C28—C29—C300.1 (3)
C3—C4—C5—C60.6 (3)C26—C25—C30—C290.2 (3)
C2—C1—C6—C50.1 (3)N6—C25—C30—C29179.7 (2)
N1—C1—C6—C5177.3 (2)C28—C29—C30—C250.3 (3)
C4—C5—C6—C11.1 (3)C26—O4—C31—C32176.52 (18)
C2—O1—C7—C8177.48 (19)C33—N7—N8—N9177.30 (16)
N2—N3—C9—C146.8 (3)N7—N8—N9—C41173.13 (17)
N2—N3—C9—C10171.86 (18)N8—N7—C33—C3818.7 (3)
C15—O2—C10—C9178.17 (18)N8—N7—C33—C34162.85 (18)
C15—O2—C10—C110.1 (3)C39—O5—C34—C350.3 (3)
C14—C9—C10—O2179.74 (18)C39—O5—C34—C33179.99 (18)
N3—C9—C10—O21.0 (3)C38—C33—C34—O5178.60 (18)
C14—C9—C10—C111.5 (3)N7—C33—C34—O52.9 (3)
N3—C9—C10—C11177.20 (19)C38—C33—C34—C351.1 (3)
O2—C10—C11—C12179.1 (2)N7—C33—C34—C35177.37 (19)
C9—C10—C11—C121.1 (3)O5—C34—C35—C36179.2 (2)
C10—C11—C12—C130.3 (3)C33—C34—C35—C360.5 (3)
C11—C12—C13—C140.0 (3)C34—C35—C36—C370.1 (3)
C12—C13—C14—C90.5 (3)C35—C36—C37—C380.2 (3)
C10—C9—C14—C131.3 (3)C36—C37—C38—C330.4 (3)
N3—C9—C14—C13177.4 (2)C34—C33—C38—C371.1 (3)
C10—O2—C15—C16179.05 (19)N7—C33—C38—C37177.32 (19)
C17—N4—N5—N6179.42 (16)C34—O5—C39—C40177.32 (18)
N4—N5—N6—C25178.42 (17)N8—N9—C41—C469.9 (3)
N5—N4—C17—C223.0 (3)N8—N9—C41—C42168.33 (18)
N5—N4—C17—C18177.49 (18)C47—O6—C42—C435.7 (3)
C23—O3—C18—C1916.0 (3)C47—O6—C42—C41176.92 (18)
C23—O3—C18—C17163.72 (18)C46—C41—C42—O6179.48 (18)
C22—C17—C18—O3179.33 (19)N9—C41—C42—O61.2 (3)
N4—C17—C18—O30.2 (3)C46—C41—C42—C431.9 (3)
C22—C17—C18—C190.4 (3)N9—C41—C42—C43176.37 (19)
N4—C17—C18—C19179.97 (19)O6—C42—C43—C44177.3 (2)
O3—C18—C19—C20179.5 (2)C41—C42—C43—C440.0 (3)
C17—C18—C19—C200.8 (3)C42—C43—C44—C451.0 (3)
C18—C19—C20—C211.2 (4)C43—C44—C45—C460.0 (3)
C19—C20—C21—C220.3 (4)C44—C45—C46—C411.9 (3)
N4—C17—C22—C21179.2 (2)N9—C41—C46—C45175.31 (19)
C18—C17—C22—C211.3 (3)C42—C41—C46—C452.9 (3)
C20—C21—C22—C171.0 (4)C42—O6—C47—C48179.43 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.882.203.024 (3)156
N6—H6N···N10.882.203.033 (3)158
N9—H9N···O70.882.192.920 (3)140
O7—H7O···N70.882.152.839 (3)134
C28—H28A···Cg1i0.952.893.712 (3)146
C36—H36A···Cg2i0.952.743.549 (3)144
C15—H15A···Cg3ii0.992.763.463 (3)128
C32—H32C···Cg3i0.982.803.593 (3)138
C40—H40C···Cg4i0.982.843.632 (3)138
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H19N3O2·0.33CH4O
Mr296.02
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)12.146 (3), 13.640 (3), 16.117 (4)
α, β, γ (°)71.448 (5), 72.827 (4), 81.151 (4)
V3)2413.2 (10)
Z6
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.978, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
21014, 9421, 4997
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.204, 1.00
No. of reflections9421
No. of parameters587
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.882.203.024 (3)156
N6—H6N···N10.882.203.033 (3)158
N9—H9N···O70.882.192.920 (3)140
O7—H7O···N70.882.152.839 (3)134
C28—H28A···Cg1i0.952.893.712 (3)146
C36—H36A···Cg2i0.952.743.549 (3)144
C15—H15A···Cg3ii0.992.763.463 (3)128
C32—H32C···Cg3i0.982.803.593 (3)138
C40—H40C···Cg4i0.982.843.632 (3)138
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1.
 

References

First citationBruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem. 67, 2271–2277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56.  CrossRef CAS Google Scholar
First citationHematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117–x118.  CAS Google Scholar
First citationLeman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324–4336.  CSD CrossRef CAS Web of Science Google Scholar
First citationMelardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x281–x282.  CAS Google Scholar
First citationMeldola, R. & Streatfield, F. W. (1888). J. Chem. Soc. 61, 102–118.  Google Scholar
First citationPayehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792–1798.  Web of Science CSD CrossRef CAS Google Scholar
First citationRofouei, M. K., Melardi, M. R., Salemi, Y. & Kazemi, S. R. (2009). Acta Cryst. E65, o719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79–x80.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry. Vol. 2, pp. 189–244. Oxford: Pergamon Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds