organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­oxy­anilinium bromide

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 5 August 2009; accepted 31 August 2009; online 5 September 2009)

The title compound, C7H10NO+·Br, consists of almost planar 4-methoxy­anilinium cations, wherein the O atom lies 0.049 (3) Å out of the plane formed by the non-H atoms, and a Br anion. Strong N—H⋯Br and N—H⋯(Br,Br) hydrogen bonding contributes to the stability of the crystal structure and links the cations and anions into a three-dimensional network.

Related literature

For background to dielectric–ferroelectric materials, see: Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 9, 2026-2029.]); Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]). For related structures, see: Tan et al. (2006[Tan, T.-F., Han, J., Pang, M.-L., Song, H.-B., Ma, Y.-X. & Mang, J.-B. (2006). Cryst. Growth Des. 6, 1186-1193.]); Soumhi et al. (2006[Soumhi, E. H., Saadoune, I. & Driss, A. (2006). Acta Cryst. E62, o212-o214.]); Ben Amor et al. (1995[Ben Amor, F., Soumhi, E. H., Ould Abdellahi, M. & Jouini, T. (1995). Acta Cryst. C51, 933-935.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10NO+·Br

  • Mr = 204.07

  • Orthorhombic, P b c a

  • a = 8.9779 (18) Å

  • b = 8.6978 (17) Å

  • c = 22.132 (4) Å

  • V = 1728.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.69 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.391, Tmax = 0.391

  • 16334 measured reflections

  • 1985 independent reflections

  • 1276 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 1.12

  • 1985 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.89 2.52 3.409 (3) 177
N1—H1B⋯Br1i 0.89 2.55 3.314 (3) 145
N1—H1B⋯Br1ii 0.89 3.00 3.430 (3) 112
N1—H1C⋯Br1iii 0.89 2.57 3.300 (3) 140
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

This study is a part of systematic investigation of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Hang et al., 2009) and organic-inorganic hybrids. The title compound, 4-methoxyanilinium bromide, (I), has no dielectric disuniform from 80 K to 450 K, (m.p. 458–459 K). In this article, the crystal structure of (I) has been presented.

The asymmetric unit of the title compound is built up from an almost planar 4-methoxybenzenamine cation wherein O1 lies 0.049 (3) Å out of the plane formed by its non-hydrogen atoms and a Br- anion (Fig. 1). The strong N—H···Br hydrogen bonding (N···Br distances 3.300 (3)–3.430 (3) Å) contribute to the stability of the crystal structure and lead the cations and anions to tridimensional network (Fig 2). The crystal structures containing 4-methoxybenzenamine cation have been reported (Tan et al., 2006; Soumhi et al., 2006; Ben Amor et al., 1995).

Related literature top

For background to dielectric–ferroelectric

materials, see: Hang et al. (2009); Li et al. (2008). For related structures, see: Tan et al. (2006); Soumhi et al. (2006); Ben Amor et al. (1995).

Experimental top

Single crystals of 4-methoxyanilinium bromide were prepared by slow evaporation at room temperature of an ethanol solution of 4-methoxybenzenamine and hydrobromic acid.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound; dashed lines indicate hydrogen bonds.
4-Methoxyanilinium bromide top
Crystal data top
C7H10NO+·BrF(000) = 816
Mr = 204.07Dx = 1.569 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6139 reflections
a = 8.9779 (18) Åθ = 3.3–27.7°
b = 8.6978 (17) ŵ = 4.69 mm1
c = 22.132 (4) ÅT = 298 K
V = 1728.2 (6) Å3Prism, colourless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
1985 independent reflections
Radiation source: fine-focus sealed tube1276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.391, Tmax = 0.391l = 2828
16334 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0263P)2 + 1.3429P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
1985 reflectionsΔρmax = 0.39 e Å3
93 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0232 (9)
Crystal data top
C7H10NO+·BrV = 1728.2 (6) Å3
Mr = 204.07Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.9779 (18) ŵ = 4.69 mm1
b = 8.6978 (17) ÅT = 298 K
c = 22.132 (4) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
1985 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1276 reflections with I > 2σ(I)
Tmin = 0.391, Tmax = 0.391Rint = 0.075
16334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.12Δρmax = 0.39 e Å3
1985 reflectionsΔρmin = 0.33 e Å3
93 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1517 (3)0.3060 (4)0.29591 (13)0.0721 (9)
N10.0282 (4)0.2527 (4)0.05037 (14)0.0548 (9)
H1A0.08420.32010.03050.066*
H1B0.06760.27480.04470.066*
H1C0.04690.15830.03690.066*
C10.1170 (5)0.2823 (5)0.23712 (18)0.0497 (10)
C20.1934 (5)0.3727 (5)0.1965 (2)0.0650 (12)
H2A0.26500.44120.21050.078*
C30.1653 (5)0.3630 (5)0.13576 (18)0.0596 (11)
H3A0.21660.42580.10880.071*
C40.0621 (4)0.2612 (4)0.11502 (17)0.0427 (9)
C50.0123 (4)0.1673 (5)0.15443 (17)0.0538 (10)
H5A0.08080.09580.14010.065*
C60.0153 (5)0.1797 (5)0.21591 (17)0.0533 (11)
H6A0.03630.11730.24290.064*
C70.0851 (7)0.2069 (6)0.3394 (2)0.0914 (17)
H7A0.11840.23510.37910.137*
H7B0.11340.10250.33120.137*
H7C0.02130.21620.33730.137*
Br10.25218 (4)0.51025 (4)0.021898 (16)0.0495 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.084 (2)0.088 (2)0.0449 (17)0.0026 (19)0.0164 (17)0.0048 (17)
N10.057 (2)0.059 (2)0.0480 (19)0.0099 (16)0.0074 (17)0.0047 (15)
C10.048 (2)0.053 (2)0.048 (2)0.011 (2)0.0035 (19)0.006 (2)
C20.067 (3)0.068 (3)0.060 (3)0.021 (2)0.008 (2)0.009 (2)
C30.063 (3)0.066 (3)0.050 (3)0.017 (2)0.001 (2)0.001 (2)
C40.042 (2)0.045 (2)0.041 (2)0.0082 (17)0.0029 (17)0.0057 (17)
C50.049 (2)0.054 (3)0.058 (3)0.005 (2)0.007 (2)0.006 (2)
C60.051 (3)0.061 (3)0.048 (2)0.004 (2)0.001 (2)0.0055 (19)
C70.107 (4)0.120 (5)0.047 (3)0.011 (4)0.007 (3)0.012 (3)
Br10.0493 (3)0.0461 (3)0.0531 (3)0.00163 (19)0.0010 (2)0.00423 (18)
Geometric parameters (Å, º) top
O1—C11.354 (5)C3—C41.361 (5)
O1—C71.424 (6)C3—H3A0.9300
N1—C41.465 (5)C4—C51.369 (5)
N1—H1A0.8893C5—C61.387 (5)
N1—H1B0.8903C5—H5A0.9300
N1—H1C0.8899C6—H6A0.9300
C1—C61.360 (6)C7—H7A0.9600
C1—C21.377 (6)C7—H7B0.9600
C2—C31.370 (5)C7—H7C0.9600
C2—H2A0.9300
C1—O1—C7117.5 (4)C3—C4—C5120.4 (4)
C4—N1—H1A109.5C3—C4—N1120.3 (4)
C4—N1—H1B109.2C5—C4—N1119.4 (3)
H1A—N1—H1B109.5C4—C5—C6119.4 (4)
C4—N1—H1C109.6C4—C5—H5A120.3
H1A—N1—H1C109.6C6—C5—H5A120.3
H1B—N1—H1C109.5C1—C6—C5120.6 (4)
O1—C1—C6125.9 (4)C1—C6—H6A119.7
O1—C1—C2115.2 (4)C5—C6—H6A119.7
C6—C1—C2118.9 (4)O1—C7—H7A109.5
C3—C2—C1120.9 (4)O1—C7—H7B109.5
C3—C2—H2A119.5H7A—C7—H7B109.5
C1—C2—H2A119.5O1—C7—H7C109.5
C4—C3—C2119.7 (4)H7A—C7—H7C109.5
C4—C3—H3A120.1H7B—C7—H7C109.5
C2—C3—H3A120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.892.523.409 (3)177
N1—H1B···Br1i0.892.553.314 (3)145
N1—H1B···Br1ii0.893.003.430 (3)112
N1—H1C···Br1iii0.892.573.300 (3)140
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC7H10NO+·Br
Mr204.07
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.9779 (18), 8.6978 (17), 22.132 (4)
V3)1728.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)4.69
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.391, 0.391
No. of measured, independent and
observed [I > 2σ(I)] reflections
16334, 1985, 1276
Rint0.075
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.12
No. of reflections1985
No. of parameters93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.33

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.892.523.409 (3)177
N1—H1B···Br1i0.892.553.314 (3)145
N1—H1B···Br1ii0.893.003.430 (3)112
N1—H1C···Br1iii0.892.573.300 (3)140
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z; (iii) x+1/2, y1/2, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationBen Amor, F., Soumhi, E. H., Ould Abdellahi, M. & Jouini, T. (1995). Acta Cryst. C51, 933–935.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 9, 2026–2029.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoumhi, E. H., Saadoune, I. & Driss, A. (2006). Acta Cryst. E62, o212–o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, T.-F., Han, J., Pang, M.-L., Song, H.-B., Ma, Y.-X. & Mang, J.-B. (2006). Cryst. Growth Des. 6, 1186–1193.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds