organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isonicotinium hydrogen sulfate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 10 August 2009; accepted 31 August 2009; online 5 September 2009)

The crystal structure of the title compound, C6H6NO2+·HSO4, is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For background to simple mol­ecular–ionic crystals containing organic cations and acidic anions (1:1 molar ratio), see: Czupiński et al. (2002[Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.]); Katrusiak & Szafrański (1999[Katrusiak, A. & &Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.], 2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]). For a related structure, see: Jebas et al. (2006[Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481-o3482.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6NO2+·HSO4

  • Mr = 221.18

  • Monoclinic, P 21 /c

  • a = 8.3816 (17) Å

  • b = 11.439 (2) Å

  • c = 9.4057 (19) Å

  • β = 109.12 (3)°

  • V = 852.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.90, Tmax = 0.92

  • 8697 measured reflections

  • 1947 independent reflections

  • 1745 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.14

  • 1947 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O6i 0.85 1.81 2.6425 (19) 166
O3—H3⋯O5ii 0.94 1.75 2.6543 (18) 160
N1—H1A⋯O5 0.86 1.94 2.787 (2) 167
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals (1:1molar ratio) due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). The crystal structure of isonicotinium nitrate monohydrate has been reported. (Jebas et al., 2006). In our laboratory, the title compound, (I), has been synthesized, its crystal structure is reported herein.

The asymmetric unit of the title compound consists of protoned isonicotinic acid C6H6NO2+ and HSO4-anions (Fig. 1). The isonicotinium cation is essentially planar. The crystal structure is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds. The H-bonds form a two-dimensional network as presented in Fig 2. viewed along the a-axis.

Related literature top

For background to simple molecular–ionic crystals

containing organic cations and acid radicals (1:1molar ratio), see: Czupiński et al. (2002); Katrusiak & Szafrański (1999, 2006). For a related structure, see: Jebas et al. (2006).

Experimental top

Isonicotinic acid (10 mmol) and 10% aqueous H2SO4 in a molar ratio of 1:1 were mixed and dissolved in water by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed, collected and washed with dilute aqueous H2SO4.

Refinement top

Hydrogen atoms bonded to N and O were located from a difference map and were included at those positions (O—H = 0.85/0.95 Å and N—H = 0.86 Å), while the remaining H atoms were placed in calculated positions, with C—H = 0.93 Å, and refined using a riding model, with Uiso(H)=1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels; the thermal elliposids have been drawn at 50% probability level.
[Figure 2] Fig. 2. The H-bonded two-dimensional network of the title compound viewed down the a axis. Hydrogen bonds are drawn as dashed lines
Isonicotinium hydrogen sulfate top
Crystal data top
C6H6NO2+·HSO4F(000) = 456
Mr = 221.18Dx = 1.716 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1745 reflections
a = 8.3816 (17) Åθ = 3.1–27.5°
b = 11.439 (2) ŵ = 0.39 mm1
c = 9.4057 (19) ÅT = 293 K
β = 109.12 (3)°Block, colorless
V = 852.0 (3) Å30.25 × 0.22 × 0.2 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1947 independent reflections
Radiation source: fine-focus sealed tube1745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.90, Tmax = 0.92l = 1212
8697 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.395P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1947 reflectionsΔρmax = 0.29 e Å3
128 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.164 (6)
Crystal data top
C6H6NO2+·HSO4V = 852.0 (3) Å3
Mr = 221.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3816 (17) ŵ = 0.39 mm1
b = 11.439 (2) ÅT = 293 K
c = 9.4057 (19) Å0.25 × 0.22 × 0.2 mm
β = 109.12 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1947 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1745 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.92Rint = 0.043
8697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.14Δρmax = 0.29 e Å3
1947 reflectionsΔρmin = 0.38 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73722 (6)0.21100 (4)0.56236 (4)0.02476 (17)
O20.86500 (19)0.91218 (12)0.57234 (16)0.0404 (4)
H2B0.87230.98630.57270.061*
O60.88648 (17)0.14017 (12)0.62022 (16)0.0392 (4)
O10.71828 (19)0.93897 (12)0.32951 (16)0.0405 (4)
O50.72948 (19)0.26942 (12)0.42296 (14)0.0372 (4)
O40.58610 (18)0.15100 (13)0.55516 (17)0.0427 (4)
O30.7598 (2)0.31698 (11)0.67114 (15)0.0413 (4)
H30.73460.30190.75940.062*
C60.7789 (2)0.87673 (16)0.4359 (2)0.0293 (4)
C30.7616 (2)0.74617 (16)0.42727 (19)0.0270 (4)
C40.8443 (3)0.67611 (17)0.5487 (2)0.0354 (4)
H4A0.91520.70890.63740.042*
C20.6584 (2)0.69616 (17)0.2959 (2)0.0346 (4)
H2A0.60260.74270.21350.041*
N10.7200 (2)0.51277 (15)0.4078 (2)0.0423 (4)
H1A0.70670.43820.40190.051*
C50.8204 (3)0.55833 (18)0.5365 (2)0.0418 (5)
H5A0.87390.50990.61750.050*
C10.6393 (3)0.57727 (19)0.2881 (2)0.0409 (5)
H1B0.57070.54200.20020.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0360 (3)0.0205 (2)0.0191 (2)0.00064 (16)0.01072 (17)0.00045 (14)
O20.0547 (9)0.0241 (7)0.0376 (8)0.0021 (6)0.0087 (6)0.0019 (6)
O60.0381 (8)0.0309 (7)0.0407 (8)0.0034 (6)0.0023 (6)0.0038 (6)
O10.0506 (9)0.0312 (7)0.0398 (8)0.0061 (6)0.0148 (7)0.0096 (6)
O50.0644 (10)0.0292 (7)0.0217 (7)0.0011 (6)0.0194 (6)0.0001 (5)
O40.0385 (8)0.0453 (9)0.0477 (9)0.0067 (6)0.0185 (6)0.0008 (7)
O30.0794 (11)0.0246 (7)0.0280 (7)0.0030 (7)0.0285 (7)0.0051 (5)
C60.0293 (9)0.0258 (9)0.0345 (10)0.0018 (7)0.0128 (7)0.0022 (7)
C30.0284 (9)0.0258 (9)0.0294 (9)0.0011 (7)0.0130 (7)0.0014 (7)
C40.0413 (11)0.0296 (9)0.0332 (10)0.0013 (8)0.0094 (8)0.0017 (8)
C20.0341 (10)0.0337 (10)0.0343 (10)0.0003 (8)0.0090 (8)0.0002 (8)
N10.0540 (11)0.0234 (8)0.0569 (12)0.0060 (7)0.0282 (9)0.0041 (7)
C50.0550 (13)0.0302 (10)0.0412 (12)0.0032 (9)0.0171 (10)0.0065 (9)
C10.0397 (11)0.0389 (11)0.0437 (12)0.0079 (9)0.0133 (9)0.0110 (9)
Geometric parameters (Å, º) top
S1—O41.4226 (15)C3—C41.382 (3)
S1—O61.4393 (14)C4—C51.361 (3)
S1—O51.4540 (13)C4—H4A0.9300
S1—O31.5574 (13)C2—C11.369 (3)
O2—C61.314 (2)C2—H2A0.9300
O2—H2B0.8500N1—C11.331 (3)
O1—C61.197 (2)N1—C51.334 (3)
O3—H30.9372N1—H1A0.8600
C6—C31.500 (3)C5—H5A0.9300
C3—C21.379 (3)C1—H1B0.9300
O4—S1—O6113.36 (9)C5—C4—H4A120.5
O4—S1—O5113.76 (9)C3—C4—H4A120.5
O6—S1—O5112.10 (9)C1—C2—C3119.23 (19)
O4—S1—O3108.75 (9)C1—C2—H2A120.4
O6—S1—O3106.64 (9)C3—C2—H2A120.4
O5—S1—O3101.22 (8)C1—N1—C5123.11 (18)
C6—O2—H2B109.1C1—N1—H1A118.4
S1—O3—H3115.1C5—N1—H1A118.4
O1—C6—O2125.44 (18)N1—C5—C4119.67 (19)
O1—C6—C3122.68 (17)N1—C5—H5A120.2
O2—C6—C3111.87 (15)C4—C5—H5A120.2
C2—C3—C4119.86 (18)N1—C1—C2119.18 (19)
C2—C3—C6118.85 (16)N1—C1—H1B120.4
C4—C3—C6121.28 (16)C2—C1—H1B120.4
C5—C4—C3118.95 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O6i0.851.812.6425 (19)166
O3—H3···O5ii0.941.752.6543 (18)160
N1—H1A···O50.861.942.787 (2)167
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6NO2+·HSO4
Mr221.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3816 (17), 11.439 (2), 9.4057 (19)
β (°) 109.12 (3)
V3)852.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.25 × 0.22 × 0.2
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.90, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
8697, 1947, 1745
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.14
No. of reflections1947
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O6i0.851.812.6425 (19)165.8
O3—H3···O5ii0.941.752.6543 (18)160.0
N1—H1A···O50.861.942.787 (2)166.6
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationCzupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Google Scholar
First citationJebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481–o3482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatrusiak, A. & &Szafrański, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds