organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-2H-1,3-oxazine-2,6(3H)-dione

aDepartment of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
*Correspondence e-mail: kastner@bucknell.edu

(Received 13 August 2009; accepted 28 August 2009; online 5 September 2009)

In the title compound, C5H5NO3, the planar (maximum deviation = 0.075 Å for the ring O atom) mol­ecules form N—H⋯O hydrogen bonds in a zigzag chain (C—O⋯N bond angle ≃ 140°) between glide-related mol­ecules.

Related literature

For synthetic background, see: Warren et al. (1975[Warren, J. D., MacMillan, J. H. & Washburne, S. S. (1975). J. Org. Chem. 40, 743-746.]); Rehberg & Glass (1995[Rehberg, G. M. & Glass, B. M. (1995). Org. Prep. Proced. Int. 27, 651-652.]). For related structures, see: Copley et al. (2005[Copley, R. C. B., Deprez, L. S., Lewis, T. C. & Price, S. L. (2005). CrystEngComm, 7, 421-428.]); Parrish, Leuschner et al. (2009[Parrish, D., Glass, B., Rehberg, G. M. & Kastner, M. E. (2009). Acta Cryst. E65, o2356.]); Parrish, Tivitmahaisoon et al. 2009[Parrish, D., Tivitmahaisoon, P., Rehberg, G. M. & Kastner, M. E. (2009). Acta Cryst. E65, o2355.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5NO3

  • Mr = 127.1

  • Monoclinic, P 21 /n

  • a = 7.254 (3) Å

  • b = 6.683 (2) Å

  • c = 11.689 (5) Å

  • β = 98.11 (4)°

  • V = 561.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.46 × 0.30 × 0.10 mm

Data collection
  • Bruker R3/V diffractometer

  • Absorption correction: none

  • 1410 measured reflections

  • 1294 independent reflections

  • 910 reflections with I > 2σ(I)

  • Rint = 0.012

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.191

  • S = 0.93

  • 1294 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O6i 0.86 2.02 2.877 (3) 173
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis of derivatives of 3-oxauracil has previously been reported (Warren et al., 1975) and an improved synthesis of the unsubstituted 3-oxauracil was reported by Rehberg & Glass (1995). The structure of the unsubstituted 3-oxauracil and its monohydrate have been reported (Copley et al., 2005). Three derivatives of 3-oxauracil (4-methyl, 4-bromo, and 4,5-dichloro) have been prepared in our laboratory in route to the synthesis of 1-aza-1,3-butadienes. In this paper, we report the crystal structure of the title compound, (I).

In the title compound (Fig. 1) only one intermolecular H-bond is formed between N3 and O6 of glide-related molecules (details are given in Table 1). Although the molecules of (I) are planar, the H-bonding chains are staggered as shown in Figure 2. The hydrogen bonding networks in (I) differs significantly from the hydrogen bonding in 4,5-dichloro (Parrish, Leuschner et al., 2009) and 4-bromo (Parrish, Tivitmahaisoon et al., 2009) derivatives.

Related literature top

For synthetic background, see: Warren et al. (1975); Rehberg & Glass (1995). For related structures, see: Copley et al. (2005); Parrish, Leuschner et al. (2009); Parrish, Tivitmahaisoon et al. 2009).

Experimental top

Citraconic anhydride (3-methylfuran-2,5-dione, 2.0 ml, 22 mmol) and trimethylsilyl azide (3.0 ml, 23 mmol) were added to 10 ml dichloromethane at 273 K and stirred under nitrogen for 4 h. Upon warming to room temperature over night, a white precipitate formed. Ethanol (2.5 ml) was added, the mixture stirred 2 additional hours, and then the solvent was removed under reduced pressure to obtain the title compound; yield: 1.7 g (13 mmol, 59%). Crystals of the title compound were grown from a solution of acetone at room temperature by slow evaporation.

Refinement top

Hydrogen positions were calculated and refined using a riding model using the following C—H distances: methyl 0.96 Å, methylene 0.93 Å, and N—H 0.88 Å with Uiso(H) = 1.2Ueq(C5/N3) and 1.5Ueq(C7).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a axis; intermolecular hydrogen bonds have been represented by dashed lines.
4-Methyl-2H-1,3-oxazine-2,6(3H)-dione top
Crystal data top
C5H5NO3F(000) = 264
Mr = 127.1Dx = 1.505 Mg m3
Dm = 1.46 Mg m3
Dm measured by floatation in bromoform/hexane solution
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20 reflections
a = 7.254 (3) Åθ = 10–12.5°
b = 6.683 (2) ŵ = 0.13 mm1
c = 11.689 (5) ÅT = 293 K
β = 98.11 (4)°Plates, colorless
V = 561.0 (4) Å30.46 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker R3/V
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 3.1°
Graphite monochromatorh = 09
θ – 2θ scansk = 08
1410 measured reflectionsl = 1515
1294 independent reflections3 standard reflections every 97 reflections
910 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1301P)2 + 0.1905P]
where P = (Fo2 + 2Fc2)/3
1294 reflections(Δ/σ)max = 0.005
83 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C5H5NO3V = 561.0 (4) Å3
Mr = 127.1Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.254 (3) ŵ = 0.13 mm1
b = 6.683 (2) ÅT = 293 K
c = 11.689 (5) Å0.46 × 0.30 × 0.10 mm
β = 98.11 (4)°
Data collection top
Bruker R3/V
diffractometer
Rint = 0.012
1410 measured reflections3 standard reflections every 97 reflections
1294 independent reflections intensity decay: none
910 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 0.93Δρmax = 0.23 e Å3
1294 reflectionsΔρmin = 0.24 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6042 (2)0.1383 (2)0.68042 (13)0.0466 (5)
C20.4998 (3)0.2078 (3)0.58306 (19)0.0422 (5)
O20.3337 (2)0.2161 (3)0.57888 (19)0.0694 (6)
N30.5939 (2)0.2571 (3)0.49490 (14)0.0406 (5)
H30.53050.29670.43120.049*
C40.7833 (3)0.2477 (3)0.50089 (18)0.0392 (5)
C50.8847 (3)0.1896 (3)0.59971 (19)0.0430 (5)
H51.01370.18460.60480.052*
C60.7988 (3)0.1357 (3)0.69668 (18)0.0435 (5)
O60.8682 (3)0.0868 (3)0.79242 (15)0.0695 (7)
C70.8619 (4)0.3002 (5)0.3938 (2)0.0630 (8)
H7A0.99550.29790.40930.095*
H7B0.82100.43170.36870.095*
H7C0.82010.20500.33430.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0448 (9)0.0555 (10)0.0417 (8)0.0028 (7)0.0137 (6)0.0020 (7)
C20.0329 (10)0.0455 (12)0.0490 (11)0.0003 (8)0.0086 (8)0.0068 (9)
O20.0324 (9)0.0847 (14)0.0936 (15)0.0020 (9)0.0174 (9)0.0026 (11)
N30.0342 (9)0.0511 (10)0.0350 (9)0.0041 (7)0.0003 (7)0.0010 (7)
C40.0374 (10)0.0384 (10)0.0445 (11)0.0029 (8)0.0152 (8)0.0025 (9)
C50.0294 (9)0.0458 (12)0.0534 (12)0.0012 (9)0.0049 (8)0.0021 (10)
C60.0447 (11)0.0395 (11)0.0435 (11)0.0024 (9)0.0038 (9)0.0025 (9)
O60.0831 (14)0.0687 (13)0.0494 (10)0.0096 (10)0.0167 (9)0.0110 (9)
C70.0651 (16)0.0733 (18)0.0573 (14)0.0053 (13)0.0313 (12)0.0133 (13)
Geometric parameters (Å, º) top
O1—C21.357 (3)C4—C71.489 (3)
O1—C61.398 (3)C5—C61.415 (3)
C2—O21.200 (3)C5—H50.9300
C2—N31.354 (3)C6—O61.206 (3)
N3—C41.368 (3)C7—H7A0.9600
N3—H30.8600C7—H7B0.9600
C4—C51.337 (3)C7—H7C0.9600
C2—O1—C6123.50 (17)C4—C5—H5119.5
O2—C2—N3124.6 (2)C6—C5—H5119.5
O2—C2—O1119.2 (2)O6—C6—O1114.3 (2)
N3—C2—O1116.10 (18)O6—C6—C5129.7 (2)
C2—N3—C4124.08 (18)O1—C6—C5115.99 (18)
C2—N3—H3118.0C4—C7—H7A109.5
C4—N3—H3118.0C4—C7—H7B109.5
C5—C4—N3118.95 (18)H7A—C7—H7B109.5
C5—C4—C7124.5 (2)C4—C7—H7C109.5
N3—C4—C7116.6 (2)H7A—C7—H7C109.5
C4—C5—C6121.03 (19)H7B—C7—H7C109.5
C6—O1—C2—O2175.5 (2)N3—C4—C5—C60.9 (3)
C6—O1—C2—N36.7 (3)C7—C4—C5—C6177.8 (2)
O2—C2—N3—C4179.7 (2)C2—O1—C6—O6173.2 (2)
O1—C2—N3—C42.6 (3)C2—O1—C6—C56.9 (3)
C2—N3—C4—C51.1 (3)C4—C5—C6—O6177.3 (2)
C2—N3—C4—C7177.7 (2)C4—C5—C6—O12.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.862.022.877 (3)173
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H5NO3
Mr127.1
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.254 (3), 6.683 (2), 11.689 (5)
β (°) 98.11 (4)
V3)561.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.46 × 0.30 × 0.10
Data collection
DiffractometerBruker R3/V
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1410, 1294, 910
Rint0.012
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.191, 0.93
No. of reflections1294
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: XSCANS (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.862.022.877 (3)173.4
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the National Science Foundation for grant No. ILI8951058.

References

First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCopley, R. C. B., Deprez, L. S., Lewis, T. C. & Price, S. L. (2005). CrystEngComm, 7, 421–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationParrish, D., Glass, B., Rehberg, G. M. & Kastner, M. E. (2009). Acta Cryst. E65, o2356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParrish, D., Tivitmahaisoon, P., Rehberg, G. M. & Kastner, M. E. (2009). Acta Cryst. E65, o2355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRehberg, G. M. & Glass, B. M. (1995). Org. Prep. Proced. Int. 27, 651–652.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarren, J. D., MacMillan, J. H. & Washburne, S. S. (1975). J. Org. Chem. 40, 743–746.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds