organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Di­chloro-2H-1,3-oxazine-2,6(3H)-dione

aDepartment of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
*Correspondence e-mail: kastner@bucknell.edu

(Received 13 August 2009; accepted 28 August 2009; online 5 September 2009)

In the title compound, C4HCl2NO3, the essentially planar (maximum deviation = 0.023 Å for the ring O atom) mol­ecules form N—H⋯O hydrogen bonds between mol­ecules lying about inversion centers, forming eight-membered rings with an R22(8) motif in graph-set notation.

Related literature

For synthetic background, see: Warren et al. (1975[Warren, J. D., MacMillan, J. H. & Washburne, S. S. (1975). J. Org. Chem. 40, 743-746.]); Rehberg & Glass (1995[Rehberg, G. M. & Glass, B. M. (1995). Org. Prep. Proced. Int. 27, 651-652.]). For related structures, see: Copley et al. (2005[Copley, R. C. B., Deprez, L. S., Lewis, T. C. & Price, S. L. (2005). CrystEngComm, 7, 421-428.]); Parrish, Leuschner et al. (2009[Parrish, D., Leuschner, F., Rehberg, G. M. & Kastner, M. E. (2009). Acta Cryst. E65, o2354.]); Parrish, Tivitmahaisoon et al. (2009[Parrish, D., Tivitmahaisoon, P., Rehberg, G. M. & Kastner, M. E. (2009). Acta Cryst. E65, o2355.]). For graph-set notation in hydrogen bonding, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, p. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C4HCl2NO3

  • Mr = 181.96

  • Monoclinic, P 21 /c

  • a = 10.2290 (16) Å

  • b = 5.2549 (8) Å

  • c = 12.2766 (16) Å

  • β = 112.359 (11)°

  • V = 610.28 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.38 × 0.33 × 0.15 mm

Data collection
  • Siemens R3m/V diffractometer

  • Absorption correction: none

  • 1566 measured reflections

  • 1405 independent reflections

  • 1235 reflections with I > 2σ(I)

  • Rint = 0.053

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 0.95

  • 1405 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 1.99 2.845 (2) 174
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of derivatives of 3-oxauracil has previously been reported (Warren et al., 1975) and an improved synthesis of the unsubstituted 3-oxauracil was reported by Rehberg & Glass (1995). The structure of the unsubstituted 3-oxauracil and its monohydrate have been reported (Copley et al., 2005). Three derivatives of 3-oxauracil (4-methyl, 4-bromo, and 4,5-dichloro) have been prepared in our laboratory in route to the synthesis of 1-aza-1,3-butadienes. In this paper, we report the crystal structure of the title compound, (I).

Unlike the hydrogen bonding observed in 4-methyl derivative (Parrish, Leuschner et al., 2009) resulting in staggered chains of molecules, in the crystal structure of of the title compound (Fig. 1), the molecules of (I) are held together by classical intermolecular hydrogen bonds of the type N—H···O resulting in dimeric units about inversion centers, forming eight membered ring systems which may be described in terms of graph set notation (Bernstein et al. 1994) as R22(8) ring motif (details have been given in Table 1 and Figure 2). The molecular dimensions in (I) agree well with the corresponding bond distances and angles reported for the above mentioned structures and 4-boromo derivative of 3-oxauracil (Parrish, Tivitmahaisoon et al., 2009).

Related literature top

For synthetic background, see: Warren et al. (1975); Rehberg & Glass (1995). For related structures, see: Copley et al. (2005); Parrish, Leuschner et al. (2009); Parrish, Tivitmahaisoon et al. (2009). For graph-set notation in hydrogen bonding, see: Bernstein et al. (1994).

Experimental top

Dichloromaleic anhydride (3,4-dichlorofuran-2,5-dione) and trimethylsilyl azide were treated analogously to the syntheses reported for the 4-methyl (Parrish, Leuschner et al., 2009) and 4-bromo derivatives. Crystals of the title compound were grown from a solution of acetone at room temperature by slow evaporation.

Refinement top

Hydrogen atom bonded to N3 was calculated and refined using a riding model using the N—H distance 0.88 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed along the b axis and showing the H-bonded dimer formed by inversion related molecules.
4,5-Dichloro-2H-1,3-oxazine-2,6(3H)-dione top
Crystal data top
C4HCl2NO3F(000) = 360
Mr = 181.96Dx = 1.980 Mg m3
Dm = 1.92 Mg m3
Dm measured by floatation
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20 reflections
a = 10.2290 (16) Åθ = 10–12.5°
b = 5.2549 (8) ŵ = 1.00 mm1
c = 12.2766 (16) ÅT = 293 K
β = 112.359 (11)°Plates, colorless
V = 610.28 (16) Å30.38 × 0.33 × 0.15 mm
Z = 4
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.053
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 2.2°
Graphite monochromatorh = 013
θ–2θ scansk = 06
1566 measured reflectionsl = 1514
1405 independent reflections3 standard reflections every 97 reflections
1235 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.3617P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1405 reflectionsΔρmax = 0.41 e Å3
92 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (5)
Crystal data top
C4HCl2NO3V = 610.28 (16) Å3
Mr = 181.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2290 (16) ŵ = 1.00 mm1
b = 5.2549 (8) ÅT = 293 K
c = 12.2766 (16) Å0.38 × 0.33 × 0.15 mm
β = 112.359 (11)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.053
1566 measured reflections3 standard reflections every 97 reflections
1405 independent reflections intensity decay: none
1235 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.95Δρmax = 0.41 e Å3
1405 reflectionsΔρmin = 0.38 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89484 (14)0.7547 (3)0.20549 (12)0.0405 (4)
C20.9358 (2)0.6588 (4)0.12050 (17)0.0362 (4)
O21.03514 (16)0.7544 (3)0.10600 (14)0.0474 (4)
N30.86084 (17)0.4586 (3)0.05845 (14)0.0363 (4)
H30.88640.38920.00620.044*
C40.74604 (19)0.3625 (3)0.07572 (15)0.0325 (4)
Cl40.66660 (6)0.11274 (10)0.01234 (4)0.0453 (2)
C50.7009 (2)0.4611 (4)0.15609 (16)0.0347 (4)
Cl50.55557 (6)0.35198 (11)0.17764 (5)0.0491 (2)
C60.7780 (2)0.6694 (4)0.22914 (17)0.0366 (4)
O60.75456 (18)0.7746 (3)0.30575 (15)0.0533 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0479 (8)0.0401 (8)0.0369 (7)0.0084 (6)0.0199 (6)0.0094 (6)
C20.0401 (10)0.0363 (9)0.0321 (9)0.0007 (8)0.0138 (8)0.0003 (7)
O20.0479 (8)0.0484 (9)0.0515 (9)0.0126 (7)0.0251 (7)0.0079 (7)
N30.0405 (8)0.0411 (9)0.0317 (8)0.0050 (7)0.0188 (6)0.0060 (7)
C40.0366 (9)0.0333 (9)0.0256 (8)0.0020 (7)0.0097 (7)0.0002 (7)
Cl40.0530 (3)0.0453 (3)0.0375 (3)0.0132 (2)0.0172 (2)0.0125 (2)
C50.0387 (9)0.0387 (10)0.0286 (8)0.0019 (8)0.0148 (7)0.0005 (7)
Cl50.0526 (3)0.0587 (4)0.0464 (3)0.0136 (2)0.0303 (3)0.0082 (2)
C60.0442 (10)0.0362 (9)0.0317 (9)0.0008 (8)0.0171 (8)0.0007 (7)
O60.0691 (10)0.0521 (9)0.0484 (9)0.0073 (8)0.0334 (8)0.0166 (7)
Geometric parameters (Å, º) top
O1—C21.360 (2)C4—C51.342 (3)
O1—C61.406 (2)C4—Cl41.698 (2)
C2—O21.206 (2)C5—C61.444 (3)
C2—N31.353 (3)C5—Cl51.706 (2)
N3—C41.367 (2)C6—O61.192 (2)
N3—H30.8600
C2—O1—C6125.02 (15)C5—C4—Cl4123.46 (15)
O2—C2—N3124.69 (18)N3—C4—Cl4114.72 (14)
O2—C2—O1118.79 (18)C4—C5—C6119.33 (17)
N3—C2—O1116.51 (16)C4—C5—Cl5123.23 (15)
C2—N3—C4122.41 (16)C6—C5—Cl5117.44 (14)
C2—N3—H3118.8O6—C6—O1117.20 (18)
C4—N3—H3118.8O6—C6—C5127.99 (19)
C5—C4—N3121.82 (17)O1—C6—C5114.81 (16)
C6—O1—C2—O2177.41 (18)N3—C4—C5—Cl5178.26 (14)
C6—O1—C2—N33.1 (3)Cl4—C4—C5—Cl51.5 (3)
O2—C2—N3—C4177.81 (19)C2—O1—C6—O6179.15 (19)
O1—C2—N3—C42.7 (3)C2—O1—C6—C51.0 (3)
C2—N3—C4—C50.3 (3)C4—C5—C6—O6178.2 (2)
C2—N3—C4—Cl4179.47 (15)Cl5—C5—C6—O61.5 (3)
N3—C4—C5—C62.0 (3)C4—C5—C6—O11.6 (3)
Cl4—C4—C5—C6178.29 (14)Cl5—C5—C6—O1178.62 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.861.992.845 (2)174
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC4HCl2NO3
Mr181.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2290 (16), 5.2549 (8), 12.2766 (16)
β (°) 112.359 (11)
V3)610.28 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.38 × 0.33 × 0.15
Data collection
DiffractometerSiemens R3m/V
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1566, 1405, 1235
Rint0.053
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 0.95
No. of reflections1405
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.38

Computer programs: XSCANS (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.861.992.845 (2)174.1
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors thank the National Science Foundation for grant No. ILI8951058.

References

First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, p. 431–507. New York: VCH.  Google Scholar
First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCopley, R. C. B., Deprez, L. S., Lewis, T. C. & Price, S. L. (2005). CrystEngComm, 7, 421–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationParrish, D., Leuschner, F., Rehberg, G. M. & Kastner, M. E. (2009). Acta Cryst. E65, o2354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParrish, D., Tivitmahaisoon, P., Rehberg, G. M. & Kastner, M. E. (2009). Acta Cryst. E65, o2355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRehberg, G. M. & Glass, B. M. (1995). Org. Prep. Proced. Int. 27, 651–652.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarren, J. D., MacMillan, J. H. & Washburne, S. S. (1975). J. Org. Chem. 40, 743–746.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds