metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1189-m1190

Poly[[aqua­(μ-4,4′-bi­pyridyl-κ2N:N′)bis­­(μ-formato-κ2O:O′)iron(II)] tetra­hydrate]

aDepartment of Pharmacy, Shandong Medical College, Jinan 250002, People's Republic of China, and bState Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 73000, People's Republic of China
*Correspondence e-mail: liuzhilu2009@yahoo.com.cn

(Received 14 August 2009; accepted 29 August 2009; online 9 September 2009)

In the title compound, {[Fe(CHO2)2(C10H8N2)(H2O)]·4H2O}n, the FeII ion is coordinated by two 4,4′-bipyridyl (4,4′-bpy) ligands, three formate ligands and one water molecule. The slightly distorted octahedral FeN2O4 coordination results from the N atoms of two bridging 4,4′-bpy ligands, the O atoms of two bridging HCOO anions of anti–anti mode, all in trans positions around the metal centre, and the O atoms of one terminal HCOO anion and of one water molecule. The bridging formate ligands link the metal ions into chains that are further connected via 4,4′-bpy ligands into a framework structure. The three-dimensional structure is stabilized by extensive O—H⋯O hydrogen bonding. The crystals were twinned containing a 0.84:0.16 racemate.

Related literature

For the potential applications of metal-organic frameworks, see: Jia et al. (2007[Jia, H. P., Li, W., Ju, Z. F. & Zhang, J. (2007). Inorg. Chem. Commun. 10, 265-268.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Kortz et al. (2003[Kortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). Chem. Eur. J. 9, 2945-2952.]); Li et al. (1996[Li, H., Eddaoudi, M. O., Keffe, M. & Yaghi, O. M. (1996). Nature (London), 402, 276-279.]); Liu et al. (2007[Liu, B., Li, X. M., Li, C. B., Gao, G. G. & Che, G. B. (2007). Chin. J. Struct. Chem. 26, 679-682.]); Seo et al. (2000[Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982-986.]); Wang et al. (2007[Wang, Y. T., Tang, G. M., Wu, Y., Qin, X. Y. & Qin, D. W. (2007). J. Mol. Struct. 831, 61-68.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(CHO2)2(C10H8N2)(H2O)]·4H2O

  • Mr = 392.15

  • Monoclinic, C c

  • a = 10.5021 (6) Å

  • b = 20.1959 (11) Å

  • c = 8.1256 (4) Å

  • β = 102.367 (1)°

  • V = 1683.44 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 273 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.928

  • 4376 measured reflections

  • 2523 independent reflections

  • 2468 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.00

  • 2523 reflections

  • 248 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1036 Friedel pairs

  • Flack parameter: 0.158 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯O4i 0.82 (4) 1.97 (4) 2.693 (4) 146 (6)
O6—H3W⋯O3ii 0.82 (4) 1.98 (4) 2.792 (4) 173 (4)
O6—H4W⋯O9iii 0.82 (3) 1.93 (3) 2.753 (4) 175 (5)
O7—H5W⋯O8iv 0.82 (5) 2.22 (5) 3.028 (9) 171 (4)
O7—H6W⋯O4ii 0.82 (3) 2.46 (3) 3.117 (7) 137 (4)
O9—H10W⋯O1iii 0.82 (4) 2.16 (4) 2.954 (4) 165 (5)
O7—H6W⋯O2 0.82 (3) 2.61 (5) 3.158 (5) 125 (5)
O8—H7W⋯O7 0.82 (3) 1.94 (3) 2.763 (7) 174 (5)
O8—H8W⋯O6 0.82 (3) 2.031 (19) 2.797 (5) 155 (4)
O9—H9W⋯O8 0.82 (4) 1.99 (4) 2.779 (5) 163 (5)
O5—H2W⋯O6 0.82 (3) 1.94 (4) 2.729 (4) 161 (4)
Symmetry codes: (i) x, y, z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs but also for their potential applications in the areas of catalysis, separation, gas absorption, molecular recognition, nonlinear optics, and magnetochemistry (Jia et al., 2007; Li et al., 1996; Seo et al., 2000; Hagrman et al., 1999; Yaghi et al., 1998; Kortz et al., 2003; Liu et al., 2007; Wang et al., 2007). A successful strategy for the design and synthesis of predictable MOFs is the assembly reaction between metal ions and well designed organic ligands. In this paper, we report the preparation and crystal structure of the title compound, (I).

The FeII ion in the title compound (Fig. 1) is octahedrally coordinated by two bridging 4,4'-bipyridyl (4,4'-bpy) ligands, two bridging HCOO- (O1—C1—O2) groups in an anti-anti mode, all in trans positions around the metal ion, one terminal HCOO- (O3—C2—O4), and one H2O molecule. The bridging formate ligands link metal ions to form chains running along the ac direction. The chain is further connected to other chains via 4,4'-bpy ligands. The three-dimensional structure is stabilized by extensive hydrogen bonding (Fig. 2 and Table 1).

Related literature top

For the potential applications of metal-organic frameworks, see: Jia et al. (2007); Hagrman et al. (1999); Kortz et al. (2003); Li et al. (1996); Liu et al. (2007); Seo et al. (2000); Wang et al. (2007); Yaghi et al. (1998).

Experimental top

The crystallization was performed in a 25 ml Teflon-lined stainless steel vessel. A mixture of 4,4'-bipyridyl ligand (1 mmol), iron(II) chloride tetrahydrate (1 mmol), and sodium formate (1 mmol) in 14 ml water was heated to 443 K, and kept at this temperature for one day. Green crystals were obtained after cooling to room temperature with the yield 75%.

Refinement top

The space group Cc was determined from successful refinement of the structure. However, an analysis of the data and a high value of Flack parameter indicated twinning which was resolved by applying an appropriate twin law and using 1031 Friedel pairs which were not merged. The BASF parameter was 0.1728, indicating a 0.83:0.17 racemate. All hydrogen atoms bound to carbon atoms were refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H-atoms of the water molecules are included in the refinement using the 'DFIX' command with the H-atoms separated by 1.38 Å, and the H—O bonds were constrained to be 0.82 Å with error 0.01. An overall Uiso was allowed for all H-atoms of water molecules.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes for atoms: N1A, x+1/2, -y+3/2, z+1/2 and O2B, x+1/2, y-1/2, z.
[Figure 2] Fig. 2. Packing diagram of the title compound showing hydrogen bonding; H-atoms not involved in H-bonds have been excluded for clarity.
Poly[[aqua(µ-4,4'-bipyridyl-κ2N:N')-µ-formato- κ2O:O'-formato-κO-iron(II)] tetrahydrate] top
Crystal data top
[Fe(CHO2)2(C10H8N2)(H2O)]·4H2OF(000) = 816
Mr = 392.15Dx = 1.547 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4008 reflections
a = 10.5021 (6) Åθ = 2.2–28.3°
b = 20.1959 (11) ŵ = 0.94 mm1
c = 8.1256 (4) ÅT = 273 K
β = 102.367 (1)°Block, green
V = 1683.44 (16) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2523 independent reflections
Radiation source: fine-focus sealed tube2468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1211
Tmin = 0.895, Tmax = 0.928k = 1924
4376 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2523 reflectionsΔρmax = 0.31 e Å3
248 parametersΔρmin = 0.42 e Å3
19 restraintsAbsolute structure: Flack (1983), 1036 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.158 (18)
Crystal data top
[Fe(CHO2)2(C10H8N2)(H2O)]·4H2OV = 1683.44 (16) Å3
Mr = 392.15Z = 4
Monoclinic, CcMo Kα radiation
a = 10.5021 (6) ŵ = 0.94 mm1
b = 20.1959 (11) ÅT = 273 K
c = 8.1256 (4) Å0.12 × 0.10 × 0.08 mm
β = 102.367 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2523 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2468 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.928Rint = 0.031
4376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.31 e Å3
S = 1.00Δρmin = 0.42 e Å3
2523 reflectionsAbsolute structure: Flack (1983), 1036 Friedel pairs
248 parametersAbsolute structure parameter: 0.158 (18)
19 restraints
Special details top

Experimental. Elemental Analysis. Calc. for C12H20FeN2O9: C 36.73, H 5.10, N 12.24%; Found: C 36.65, H 5.02, N 12.14%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.99831 (11)0.753902 (16)0.64202 (13)0.01649 (13)
C10.7398 (3)0.72764 (15)0.4049 (4)0.0274 (6)
H10.72120.77130.42730.033*
C21.0318 (4)0.76341 (18)0.2832 (5)0.0339 (8)
H20.98010.72560.26860.041*
C30.7896 (3)0.85353 (16)0.6887 (5)0.0342 (7)
H30.75270.81580.72450.041*
C40.7264 (3)0.91325 (17)0.6933 (4)0.0338 (7)
H40.64870.91490.73060.041*
C50.7789 (3)0.97064 (15)0.6424 (4)0.0294 (8)
C60.8935 (4)0.96383 (17)0.5850 (5)0.0401 (9)
H60.93211.00070.54750.048*
C70.9502 (4)0.90224 (16)0.5837 (5)0.0381 (8)
H71.02690.89890.54450.046*
C80.7165 (3)1.03639 (15)0.6479 (4)0.0280 (7)
C90.5937 (3)1.04287 (16)0.6846 (5)0.0359 (8)
H90.54931.00550.70900.043*
C100.5377 (3)1.10457 (17)0.6847 (5)0.0355 (8)
H100.45551.10760.70960.043*
C110.7777 (4)1.09450 (16)0.6157 (5)0.0355 (8)
H110.86091.09320.59320.043*
C120.7138 (3)1.15402 (16)0.6174 (4)0.0327 (8)
H120.75591.19230.59380.039*
N10.5956 (3)1.16024 (12)0.6509 (3)0.0276 (6)
N20.9005 (3)0.84703 (12)0.6360 (3)0.0267 (6)
O10.8405 (2)0.70271 (10)0.4923 (3)0.0311 (5)
O20.6621 (2)0.69888 (11)0.2902 (3)0.0305 (5)
O31.0696 (2)0.78393 (11)0.4317 (3)0.0330 (5)
O41.0559 (3)0.78812 (16)0.1566 (4)0.0569 (8)
O50.9382 (3)0.73151 (14)0.8633 (3)0.0370 (6)
O60.7891 (3)0.63516 (14)0.9637 (4)0.0482 (6)
O70.6017 (4)0.5754 (3)0.4995 (8)0.1160 (19)
O80.7346 (5)0.51513 (19)0.7912 (5)0.0972 (14)
O90.8996 (3)0.40816 (15)0.7836 (4)0.0561 (8)
H1W0.946 (5)0.7580 (16)0.942 (5)0.080*
H2W0.892 (4)0.6994 (13)0.871 (5)0.080*
H3W0.727 (3)0.660 (2)0.963 (5)0.080*
H4W0.822 (5)0.620 (2)1.057 (3)0.080*
H5W0.644 (5)0.5542 (19)0.444 (7)0.080*
H6W0.626 (5)0.6138 (10)0.518 (7)0.080*
H7W0.692 (4)0.531 (2)0.703 (3)0.080*
H8W0.761 (5)0.5426 (16)0.865 (4)0.080*
H9W0.850 (4)0.4397 (15)0.764 (6)0.080*
H10W0.885 (5)0.383 (2)0.856 (5)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0162 (2)0.01436 (18)0.0163 (2)0.00272 (16)0.00227 (13)0.00061 (15)
C10.0252 (14)0.0238 (13)0.0303 (15)0.0001 (15)0.0001 (12)0.0005 (15)
C20.0352 (19)0.0367 (16)0.030 (2)0.0028 (15)0.0070 (15)0.0049 (15)
C30.037 (2)0.0232 (16)0.0437 (18)0.0014 (14)0.0122 (15)0.0034 (13)
C40.0307 (19)0.0267 (17)0.045 (2)0.0046 (13)0.0110 (14)0.0010 (13)
C50.028 (2)0.0250 (16)0.0321 (17)0.0044 (12)0.0001 (14)0.0016 (12)
C60.040 (2)0.0225 (17)0.061 (2)0.0034 (13)0.0188 (18)0.0044 (15)
C70.0352 (19)0.0268 (16)0.056 (2)0.0049 (13)0.0171 (15)0.0004 (15)
C80.032 (2)0.0226 (15)0.0276 (16)0.0048 (12)0.0014 (14)0.0007 (12)
C90.0319 (18)0.0238 (16)0.053 (2)0.0017 (12)0.0111 (16)0.0050 (14)
C100.0259 (18)0.0288 (16)0.053 (2)0.0048 (12)0.0121 (15)0.0011 (14)
C110.0274 (18)0.0280 (17)0.051 (2)0.0042 (13)0.0073 (15)0.0010 (14)
C120.0303 (18)0.0231 (16)0.0438 (19)0.0005 (12)0.0059 (15)0.0011 (13)
N10.0275 (13)0.0231 (13)0.0300 (13)0.0046 (10)0.0009 (11)0.0000 (10)
N20.0266 (14)0.0217 (13)0.0295 (13)0.0040 (10)0.0005 (11)0.0010 (10)
O10.0256 (12)0.0278 (11)0.0339 (12)0.0014 (9)0.0067 (10)0.0007 (9)
O20.0278 (11)0.0285 (12)0.0290 (12)0.0007 (9)0.0079 (10)0.0037 (9)
O30.0379 (13)0.0348 (13)0.0252 (12)0.0003 (10)0.0040 (10)0.0025 (9)
O40.0724 (19)0.070 (2)0.0291 (13)0.0197 (15)0.0119 (12)0.0044 (13)
O50.0461 (16)0.0362 (13)0.0292 (13)0.0115 (12)0.0090 (11)0.0025 (11)
O60.0475 (15)0.0446 (15)0.0538 (17)0.0017 (11)0.0134 (12)0.0059 (12)
O70.089 (3)0.092 (3)0.161 (6)0.021 (3)0.013 (3)0.057 (3)
O80.124 (4)0.068 (3)0.086 (3)0.017 (2)0.008 (2)0.020 (2)
O90.063 (2)0.0502 (18)0.0540 (18)0.0072 (14)0.0096 (15)0.0084 (13)
Geometric parameters (Å, º) top
Fe1—O52.079 (3)C8—C91.390 (5)
Fe1—O32.097 (3)C8—C111.390 (5)
Fe1—O12.105 (2)C9—C101.378 (5)
Fe1—O2i2.105 (2)C9—H90.9300
Fe1—N22.139 (3)C10—N11.334 (4)
Fe1—N1ii2.144 (3)C10—H100.9300
C1—O11.247 (4)C11—C121.378 (5)
C1—O21.243 (4)C11—H110.9300
C1—H10.9300C12—N11.333 (5)
C2—O41.218 (5)C12—H120.9300
C2—O31.257 (4)N1—Fe1iii2.144 (3)
C2—H20.9300O2—Fe1iv2.105 (2)
C3—N21.330 (4)O5—H1W0.82 (4)
C3—C41.381 (5)O5—H2W0.82 (3)
C3—H30.9300O6—H3W0.82 (4)
C4—C51.384 (5)O6—H4W0.82 (3)
C4—H40.9300O7—H5W0.82 (5)
C5—C61.388 (5)O7—H6W0.82 (3)
C5—C81.486 (4)O8—H7W0.82 (3)
C6—C71.380 (5)O8—H8W0.82 (3)
C6—H60.9300O9—H9W0.82 (4)
C7—N21.338 (4)O9—H10W0.82 (4)
C7—H70.9300
O5—Fe1—O3174.46 (10)N2—C7—H7118.3
O5—Fe1—O192.60 (10)C6—C7—H7118.3
O3—Fe1—O192.62 (10)C9—C8—C11116.7 (3)
O5—Fe1—O2i88.06 (9)C9—C8—C5121.7 (3)
O3—Fe1—O2i86.81 (9)C11—C8—C5121.6 (3)
O1—Fe1—O2i177.17 (10)C10—C9—C8120.0 (3)
O5—Fe1—N288.72 (11)C10—C9—H9120.0
O3—Fe1—N288.90 (10)C8—C9—H9120.0
O1—Fe1—N295.96 (9)N1—C10—C9123.3 (3)
O2i—Fe1—N286.81 (10)N1—C10—H10118.4
O5—Fe1—N1ii90.57 (11)C9—C10—H10118.4
O3—Fe1—N1ii91.81 (10)C12—C11—C8119.3 (3)
O1—Fe1—N1ii84.07 (9)C12—C11—H11120.4
O2i—Fe1—N1ii93.18 (10)C8—C11—H11120.4
N2—Fe1—N1ii179.28 (13)N1—C12—C11124.1 (3)
O1—C1—O2125.4 (3)N1—C12—H12117.9
O1—C1—H1117.3C11—C12—H12117.9
O2—C1—H1117.3C12—N1—C10116.6 (3)
O4—C2—O3126.6 (4)C12—N1—Fe1iii122.3 (2)
O4—C2—H2116.7C10—N1—Fe1iii121.0 (2)
O3—C2—H2116.7C3—N2—C7116.6 (3)
N2—C3—C4123.6 (3)C3—N2—Fe1121.9 (2)
N2—C3—H3118.2C7—N2—Fe1121.4 (2)
C4—C3—H3118.2C1—O1—Fe1126.7 (2)
C3—C4—C5119.9 (3)C1—O2—Fe1iv122.8 (2)
C3—C4—H4120.1C2—O3—Fe1126.3 (2)
C5—C4—H4120.1Fe1—O5—H1W122 (3)
C4—C5—C6116.6 (3)Fe1—O5—H2W122 (3)
C4—C5—C8122.2 (3)H1W—O5—H2W115 (4)
C6—C5—C8121.3 (3)H3W—O6—H4W114 (4)
C7—C6—C5119.9 (3)H5W—O7—H6W114 (5)
C7—C6—H6120.1H7W—O8—H8W114 (4)
C5—C6—H6120.1H9W—O9—H10W115 (5)
N2—C7—C6123.4 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O4v0.82 (4)1.97 (4)2.693 (4)146 (6)
O6—H3W···O3vi0.82 (4)1.98 (4)2.792 (4)173 (4)
O6—H4W···O9vii0.82 (3)1.93 (3)2.753 (4)175 (5)
O7—H5W···O8viii0.82 (5)2.22 (5)3.028 (9)171 (4)
O7—H6W···O4vi0.82 (3)2.46 (3)3.117 (7)137 (4)
O9—H10W···O1vii0.82 (4)2.16 (4)2.954 (4)165 (5)
O7—H6W···O20.82 (3)2.61 (5)3.158 (5)125 (5)
O8—H7W···O70.82 (3)1.94 (3)2.763 (7)174 (5)
O8—H8W···O60.82 (3)2.03 (2)2.797 (5)155 (4)
O9—H9W···O80.82 (4)1.99 (4)2.779 (5)163 (5)
O5—H2W···O60.82 (3)1.94 (4)2.729 (4)161 (4)
Symmetry codes: (v) x, y, z+1; (vi) x1/2, y+3/2, z+1/2; (vii) x, y+1, z+1/2; (viii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(CHO2)2(C10H8N2)(H2O)]·4H2O
Mr392.15
Crystal system, space groupMonoclinic, Cc
Temperature (K)273
a, b, c (Å)10.5021 (6), 20.1959 (11), 8.1256 (4)
β (°) 102.367 (1)
V3)1683.44 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.895, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
4376, 2523, 2468
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.00
No. of reflections2523
No. of parameters248
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.42
Absolute structureFlack (1983), 1036 Friedel pairs
Absolute structure parameter0.158 (18)

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O4i0.82 (4)1.97 (4)2.693 (4)146 (6)
O6—H3W···O3ii0.82 (4)1.98 (4)2.792 (4)173 (4)
O6—H4W···O9iii0.82 (3)1.93 (3)2.753 (4)175 (5)
O7—H5W···O8iv0.82 (5)2.22 (5)3.028 (9)171 (4)
O7—H6W···O4ii0.82 (3)2.46 (3)3.117 (7)137 (4)
O9—H10W···O1iii0.82 (4)2.16 (4)2.954 (4)165 (5)
O7—H6W···O20.82 (3)2.61 (5)3.158 (5)125 (5)
O8—H7W···O70.82 (3)1.94 (3)2.763 (7)174 (5)
O8—H8W···O60.82 (3)2.031 (19)2.797 (5)155 (4)
O9—H9W···O80.82 (4)1.99 (4)2.779 (5)163 (5)
O5—H2W···O60.82 (3)1.94 (4)2.729 (4)161 (4)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x, y+1, z+1/2; (iv) x, y+1, z1/2.
 

Acknowledgements

This work was supported by the Chinese Academy of Sciences (`Hundred Talents Program') and the Ministry of Science and Technology of China (project of `973' plan, No. 2007CB607606)

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationJia, H. P., Li, W., Ju, Z. F. & Zhang, J. (2007). Inorg. Chem. Commun. 10, 265–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationKortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). Chem. Eur. J. 9, 2945–2952.  Web of Science CrossRef CAS Google Scholar
First citationLi, H., Eddaoudi, M. O., Keffe, M. & Yaghi, O. M. (1996). Nature (London), 402, 276–279.  Google Scholar
First citationLiu, B., Li, X. M., Li, C. B., Gao, G. G. & Che, G. B. (2007). Chin. J. Struct. Chem. 26, 679–682.  Google Scholar
First citationSeo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. T., Tang, G. M., Wu, Y., Qin, X. Y. & Qin, D. W. (2007). J. Mol. Struct. 831, 61–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1189-m1190
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds