organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano­anilinium di­hydrogen phosphate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 17 August 2009; accepted 31 August 2009; online 12 September 2009)

In the cation of the title compound, C7H7N2+·H2PO4, the nitrile group and the benzene ring are almost coplanar (r.m.s. deviation = 0.0035 Å). The cations and anions are connected by inter­molecular N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, together with ππ inter­actions [centroid–centroid distance = 3.8131 (9) Å], forming a three-dimensional network.

Related literature

For applications of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & &Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Chen et al. (2000[Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010-4012.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]). For nitrile derivatives, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang et al. 2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chinese J. Inorg. Chem. 18, 1191-1194.].

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·H2PO4

  • Mr = 216.13

  • Triclinic, [P \overline 1]

  • a = 6.1471 (12) Å

  • b = 9.3192 (19) Å

  • c = 9.3295 (19) Å

  • α = 117.20 (2)°

  • β = 93.75 (2)°

  • γ = 99.61 (2)°

  • V = 462.51 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.94, Tmax = 1.00

  • 4831 measured reflections

  • 2110 independent reflections

  • 1852 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.08

  • 2110 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O4i 0.89 1.93 2.819 (2) 176
N1—H1C⋯O1ii 0.89 1.85 2.723 (2) 166
N1—H1A⋯O1iii 0.89 1.87 2.730 (2) 161
O3—H3A⋯N2iv 0.82 1.98 2.797 (2) 176
O2—H2A⋯O4v 0.82 1.76 2.574 (2) 172
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y, -z+1; (iii) x, y, z-1; (iv) -x+2, -y, -z+1; (v) -x+2, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2000; Fu & Xiong (2008); Xie et al., 2003; Zhang et al.,2001; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks. (Wang et al. 2002; Fu et al., 2008). We report here the crystal structure of the title compound, 2-cyanoanilinium dihydrogen phosphate .

In the 2-cyanoanilinium cation (Fig.1), the nitrile group and the benzene ring are almost coplanar. The nitrile group C7N2 bond length of 1.137 (3) Å is within the normal range.

In the crystal structure, all the amine group H atoms and H2PO4- H atoms are involved in N—H···O, O—H···O and O—H···N hydrogen bonds (Table 1) with N atoms of nitrile group and O atoms of H2PO4- anion. The benzene rings [Cg···Cg] of neighbouring cation systems are separated by 3.8131 (9) Å [Cg is the centroid of the benzene rings]. These hydrogen bonds and ππ interactions link the ionic units into a three-dimensional network (Fig. 2).

Related literature top

For applications of metal-organic coordination compounds, see: Fu et al. (2007); Chen et al. (2000); Fu & Xiong (2008); Xiong et al. (1999); Xie et al. (2003); Zhang et al. (2001). For nitrile derivatives, see: Fu et al. (2008); Wang et al. 2002.

Experimental top

The commercial 2-aminobenzonitrile (3 mmol, 0.55 g) and H3PO4 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

All H atoms attached to C atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of H2PO4- anion and amine group were located in difference Fourier maps and the last stage of refinement they were treated as riding on the O atoms and N atoms, with Uiso(H) = 1.5Ueq(O and N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis showing the hydrogen bonds and the ππ interactions in the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity
2-Cyanoanilinium dihydrogen phosphate top
Crystal data top
C7H7N2+·H2PO4Z = 2
Mr = 216.13F(000) = 224
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1471 (12) ÅCell parameters from 1852 reflections
b = 9.3192 (19) Åθ = 3.4–27.5°
c = 9.3295 (19) ŵ = 0.29 mm1
α = 117.20 (2)°T = 298 K
β = 93.75 (2)°Block, colourless
γ = 99.61 (2)°0.30 × 0.25 × 0.20 mm
V = 462.51 (16) Å3
Data collection top
Rigaku Mercury2
diffractometer
2110 independent reflections
Radiation source: fine-focus sealed tube1852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD profile fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.94, Tmax = 1.00l = 1212
4831 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.23P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2110 reflectionsΔρmax = 0.33 e Å3
129 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.126 (9)
Crystal data top
C7H7N2+·H2PO4γ = 99.61 (2)°
Mr = 216.13V = 462.51 (16) Å3
Triclinic, P1Z = 2
a = 6.1471 (12) ÅMo Kα radiation
b = 9.3192 (19) ŵ = 0.29 mm1
c = 9.3295 (19) ÅT = 298 K
α = 117.20 (2)°0.30 × 0.25 × 0.20 mm
β = 93.75 (2)°
Data collection top
Rigaku Mercury2
diffractometer
2110 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1852 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 1.00Rint = 0.030
4831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
2110 reflectionsΔρmin = 0.37 e Å3
129 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3606 (3)0.17867 (19)0.13975 (19)0.0252 (3)
H1A0.49960.19560.11970.038*
H1B0.28130.23360.10780.038*
H1C0.29800.07100.08520.038*
C20.5068 (3)0.1896 (2)0.3985 (2)0.0275 (4)
C10.3654 (3)0.2371 (2)0.3135 (2)0.0254 (4)
N20.7647 (4)0.0074 (3)0.2631 (3)0.0524 (6)
C70.6495 (4)0.0801 (3)0.3194 (3)0.0343 (5)
C30.5080 (4)0.2455 (3)0.5646 (3)0.0381 (5)
H30.60400.21520.62170.046*
C60.2255 (4)0.3362 (3)0.3937 (3)0.0406 (5)
H60.12960.36740.33740.049*
C50.2268 (5)0.3900 (3)0.5589 (3)0.0524 (7)
H50.13120.45710.61280.063*
C40.3683 (5)0.3452 (3)0.6444 (3)0.0479 (6)
H40.36870.38240.75540.057*
P10.87212 (8)0.26924 (6)0.96817 (6)0.02198 (17)
O41.1050 (2)0.36166 (16)1.05571 (18)0.0311 (3)
O30.8776 (2)0.16546 (19)0.77991 (17)0.0371 (4)
H3A0.98620.12290.76720.056*
O20.7151 (2)0.38600 (16)0.97509 (17)0.0294 (3)
H2A0.78330.46200.96280.044*
O10.7610 (2)0.15769 (17)1.02994 (18)0.0334 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0267 (8)0.0251 (8)0.0264 (8)0.0079 (6)0.0025 (6)0.0141 (6)
C20.0282 (10)0.0272 (9)0.0308 (10)0.0111 (8)0.0046 (8)0.0151 (8)
C10.0274 (10)0.0233 (9)0.0269 (10)0.0076 (7)0.0031 (7)0.0128 (8)
N20.0607 (14)0.0626 (14)0.0557 (13)0.0420 (12)0.0216 (11)0.0354 (11)
C70.0382 (11)0.0409 (12)0.0354 (11)0.0170 (10)0.0054 (9)0.0252 (10)
C30.0446 (13)0.0445 (12)0.0315 (11)0.0167 (10)0.0029 (9)0.0216 (10)
C60.0442 (13)0.0484 (13)0.0360 (12)0.0294 (11)0.0081 (10)0.0192 (10)
C50.0595 (16)0.0646 (16)0.0396 (13)0.0418 (14)0.0199 (12)0.0194 (12)
C40.0612 (16)0.0555 (15)0.0277 (11)0.0264 (13)0.0098 (10)0.0156 (10)
P10.0221 (3)0.0226 (3)0.0254 (3)0.00653 (18)0.00367 (18)0.0144 (2)
O40.0277 (7)0.0282 (7)0.0405 (8)0.0032 (6)0.0050 (6)0.0213 (6)
O30.0372 (8)0.0480 (9)0.0272 (8)0.0222 (7)0.0062 (6)0.0144 (7)
O20.0253 (7)0.0276 (7)0.0427 (8)0.0101 (5)0.0087 (6)0.0211 (6)
O10.0370 (8)0.0290 (7)0.0422 (9)0.0056 (6)0.0087 (6)0.0238 (7)
Geometric parameters (Å, º) top
N1—C11.452 (2)C6—C51.384 (3)
N1—H1A0.8900C6—H60.9300
N1—H1B0.8900C5—C41.379 (4)
N1—H1C0.8900C5—H50.9300
C2—C31.390 (3)C4—H40.9300
C2—C11.393 (3)P1—O11.4972 (14)
C2—C71.431 (3)P1—O41.5004 (15)
C1—C61.368 (3)P1—O21.5537 (14)
N2—C71.137 (3)P1—O31.5770 (15)
C3—C41.368 (3)O3—H3A0.8200
C3—H30.9300O2—H2A0.8200
C1—N1—H1A109.5C1—C6—H6120.1
C1—N1—H1B109.5C5—C6—H6120.1
H1A—N1—H1B109.5C4—C5—C6120.8 (2)
C1—N1—H1C109.5C4—C5—H5119.6
H1A—N1—H1C109.5C6—C5—H5119.6
H1B—N1—H1C109.5C3—C4—C5119.5 (2)
C3—C2—C1119.88 (18)C3—C4—H4120.2
C3—C2—C7118.03 (18)C5—C4—H4120.2
C1—C2—C7122.07 (18)O1—P1—O4113.96 (8)
C6—C1—C2119.67 (19)O1—P1—O2107.38 (8)
C6—C1—N1119.67 (17)O4—P1—O2112.70 (8)
C2—C1—N1120.64 (16)O1—P1—O3109.65 (9)
N2—C7—C2176.7 (2)O4—P1—O3109.18 (9)
C4—C3—C2120.2 (2)O2—P1—O3103.43 (8)
C4—C3—H3119.9P1—O3—H3A109.5
C2—C3—H3119.9P1—O2—H2A109.5
C1—C6—C5119.9 (2)
C3—C2—C1—C61.2 (3)C2—C1—C6—C50.6 (4)
C7—C2—C1—C6177.2 (2)N1—C1—C6—C5178.9 (2)
C3—C2—C1—N1179.47 (18)C1—C6—C5—C40.2 (4)
C7—C2—C1—N11.1 (3)C2—C3—C4—C50.2 (4)
C1—C2—C3—C40.9 (3)C6—C5—C4—C30.4 (4)
C7—C2—C3—C4177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4i0.891.932.819 (2)176
N1—H1C···O1ii0.891.852.723 (2)166
N1—H1A···O1iii0.891.872.730 (2)161
O3—H3A···N2iv0.821.982.797 (2)176
O2—H2A···O4v0.821.762.574 (2)172
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+2, y, z+1; (v) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC7H7N2+·H2PO4
Mr216.13
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.1471 (12), 9.3192 (19), 9.3295 (19)
α, β, γ (°)117.20 (2), 93.75 (2), 99.61 (2)
V3)462.51 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.94, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
4831, 2110, 1852
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.08
No. of reflections2110
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4i0.891.932.819 (2)175.5
N1—H1C···O1ii0.891.852.723 (2)166.1
N1—H1A···O1iii0.891.872.730 (2)161.3
O3—H3A···N2iv0.821.982.797 (2)176.1
O2—H2A···O4v0.821.762.574 (2)171.5
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+2, y, z+1; (v) x+2, y+1, z+2.
 

Acknowledgements

This work was supported by the Outstanding Doctoral Dissertation Fund of Southeast University.

References

First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010-4012.  Web of Science CrossRef Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & &Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chinese J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds