organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-3-methyl­anilinium hydrogen sulfate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 21 August 2009; accepted 31 August 2009; online 9 September 2009)

In the cation of the title compound, C7H9BrN+·HSO4, the amino N atom is protonated. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds generate an infinite two-dimensional network parallel to (001).

Related literature

For the structures of amino derivatives, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]). Amino derivatives are used in the construction of metal-organic frameworks. For applications of metal-organic coordination compounds, see: Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Xie et al. (2002[Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323-3326.]); Zhao et al. (2004[Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367-1370.]); Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9BrN+·HSO4

  • Mr = 284.13

  • Triclinic, [P \overline 1]

  • a = 4.9448 (10) Å

  • b = 6.4084 (13) Å

  • c = 16.674 (3) Å

  • α = 98.92 (3)°

  • β = 96.22 (3)°

  • γ = 100.01 (3)°

  • V = 509.04 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.23 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 5279 measured reflections

  • 2323 independent reflections

  • 1804 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.115

  • S = 1.07

  • 2323 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 1.90 2.767 (3) 166
N1—H1B⋯O2ii 0.89 1.91 2.797 (4) 173
O1—H1⋯O4iii 0.82 1.84 2.650 (3) 168
N1—H1C⋯O4 0.89 2.09 2.829 (4) 140
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Wang et al. 2002; Fu et al., 2008; Chen et al., 2001; Xie et al., 2002; Zhao et al.,2004; Xiong et al., 1999). Amino derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks. (Fu et al., 2007; Fu & Xiong 2008). We report here the crystal structure of the title compound, 4-bromo-3-methylanilinium bisulfate.

In the title compound (Fig.1), The amino N atoms are protonated. In the crystal structure, all the amine group H atoms and HSO4- H atoms are involved in N—H···O and O—H···O hydrogen bonds (Table 1) with O atoms of HSO4- anion. These hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2).

Related literature top

For applications of metal-organic coordination compounds, see: Chen et al. (2001); Xiong et al. (1999); Xie et al. (2002); Zhao et al. (2004); Wang et al. (2002). For the structures of amino derivatives, see: Fu et al. (2007, 2008); Fu & Xiong (2008).

Experimental top

The commercial 4-bromo-3-methylaniline (3 mmol) and H2SO4 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic), C–H = 0.96 Å (methyl), O–H = 0.82 Å and N–H = 0.89 Å with Uiso(H) =1.2Ueq(C) and Uiso(H) =1.5Ueq(O or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids have been drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis showing hydrogen bonding (dotted line); H atoms not involved in hydrogen bonding have been omitted for clarity.
4-Bromo-3-methylanilinium hydrogen sulfate top
Crystal data top
C7H9BrN+·HSO4Z = 2
Mr = 284.13F(000) = 284
Triclinic, P1Dx = 1.854 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9448 (10) ÅCell parameters from 1804 reflections
b = 6.4084 (13) Åθ = 3.3–27.5°
c = 16.674 (3) ŵ = 4.23 mm1
α = 98.92 (3)°T = 298 K
β = 96.22 (3)°Block, colorless
γ = 100.01 (3)°0.40 × 0.05 × 0.05 mm
V = 509.04 (17) Å3
Data collection top
Rigaku Mercury2
diffractometer
2323 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.910, Tmax = 1.000l = 2121
5279 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.1536P]
where P = (Fo2 + 2Fc2)/3
2323 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C7H9BrN+·HSO4γ = 100.01 (3)°
Mr = 284.13V = 509.04 (17) Å3
Triclinic, P1Z = 2
a = 4.9448 (10) ÅMo Kα radiation
b = 6.4084 (13) ŵ = 4.23 mm1
c = 16.674 (3) ÅT = 298 K
α = 98.92 (3)°0.40 × 0.05 × 0.05 mm
β = 96.22 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2323 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1804 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.053
5279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
2323 reflectionsΔρmin = 0.67 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74330 (10)0.74731 (8)0.96412 (3)0.0635 (2)
N10.0682 (6)0.3866 (4)0.63055 (17)0.0278 (6)
H1A0.04520.47410.61820.042*
H1B0.03080.25610.62990.042*
H1C0.18570.37820.59390.042*
C10.5271 (7)0.6260 (6)0.8613 (2)0.0355 (8)
C40.2233 (7)0.4704 (5)0.7120 (2)0.0273 (7)
C50.4016 (7)0.3520 (5)0.7448 (2)0.0290 (7)
H50.41540.21930.71560.035*
C30.1915 (7)0.6643 (5)0.7535 (2)0.0329 (8)
H30.06960.74180.73090.039*
C60.5593 (7)0.4282 (6)0.8206 (2)0.0309 (8)
C20.3444 (8)0.7420 (6)0.8295 (2)0.0404 (9)
H20.32470.87230.85940.049*
C70.7547 (8)0.2971 (7)0.8549 (3)0.0458 (10)
H7A0.94110.37820.86350.069*
H7B0.74310.16590.81690.069*
H7C0.70430.26380.90610.069*
S10.37322 (15)0.18764 (12)0.42345 (5)0.0231 (2)
O10.6927 (5)0.1969 (4)0.43590 (16)0.0379 (6)
H10.72570.09320.45580.057*
O20.2512 (6)0.0108 (4)0.35840 (16)0.0433 (7)
O30.3537 (5)0.3945 (3)0.40391 (16)0.0328 (6)
O40.2770 (5)0.1540 (4)0.50052 (14)0.0305 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0640 (3)0.0704 (4)0.0396 (3)0.0081 (2)0.0124 (2)0.0034 (2)
N10.0312 (15)0.0272 (15)0.0268 (14)0.0091 (11)0.0038 (11)0.0062 (12)
C10.0342 (19)0.038 (2)0.0290 (18)0.0039 (15)0.0024 (15)0.0041 (16)
C40.0278 (17)0.0235 (17)0.0296 (18)0.0015 (13)0.0040 (13)0.0058 (14)
C50.0307 (17)0.0267 (17)0.0319 (18)0.0076 (14)0.0071 (14)0.0080 (15)
C30.0350 (19)0.0261 (18)0.038 (2)0.0064 (14)0.0067 (15)0.0066 (16)
C60.0254 (17)0.0352 (19)0.0342 (19)0.0017 (14)0.0067 (14)0.0156 (16)
C20.050 (2)0.0265 (19)0.041 (2)0.0040 (16)0.0063 (18)0.0014 (17)
C70.044 (2)0.055 (3)0.043 (2)0.0132 (18)0.0031 (18)0.023 (2)
S10.0207 (4)0.0192 (4)0.0313 (4)0.0042 (3)0.0043 (3)0.0091 (3)
O10.0225 (12)0.0427 (15)0.0590 (17)0.0108 (10)0.0136 (11)0.0304 (13)
O20.0570 (17)0.0272 (13)0.0392 (15)0.0020 (11)0.0044 (13)0.0009 (12)
O30.0303 (13)0.0235 (12)0.0486 (15)0.0056 (10)0.0055 (11)0.0181 (11)
O40.0318 (13)0.0285 (13)0.0369 (14)0.0092 (10)0.0122 (10)0.0145 (11)
Geometric parameters (Å, º) top
Br1—C11.894 (4)C3—H30.9300
N1—C41.458 (4)C6—C71.509 (5)
N1—H1A0.8900C2—H20.9300
N1—H1B0.8900C7—H7A0.9600
N1—H1C0.8900C7—H7B0.9600
C1—C21.379 (6)C7—H7C0.9600
C1—C61.386 (5)S1—O31.430 (2)
C4—C31.369 (5)S1—O21.437 (3)
C4—C51.382 (5)S1—O41.452 (2)
C5—C61.380 (5)S1—O11.560 (2)
C5—H50.9300O1—H10.8200
C3—C21.376 (5)
C4—N1—H1A109.5C5—C6—C7119.9 (3)
C4—N1—H1B109.5C1—C6—C7123.4 (3)
H1A—N1—H1B109.5C3—C2—C1119.8 (3)
C4—N1—H1C109.5C3—C2—H2120.1
H1A—N1—H1C109.5C1—C2—H2120.1
H1B—N1—H1C109.5C6—C7—H7A109.5
C2—C1—C6122.6 (3)C6—C7—H7B109.5
C2—C1—Br1117.8 (3)H7A—C7—H7B109.5
C6—C1—Br1119.6 (3)C6—C7—H7C109.5
C3—C4—C5121.7 (3)H7A—C7—H7C109.5
C3—C4—N1119.5 (3)H7B—C7—H7C109.5
C5—C4—N1118.8 (3)O3—S1—O2114.06 (16)
C6—C5—C4120.8 (3)O3—S1—O4113.59 (14)
C6—C5—H5119.6O2—S1—O4111.41 (15)
C4—C5—H5119.6O3—S1—O1102.60 (13)
C4—C3—C2118.4 (3)O2—S1—O1107.73 (16)
C4—C3—H3120.8O4—S1—O1106.61 (14)
C2—C3—H3120.8S1—O1—H1109.5
C5—C6—C1116.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.891.902.767 (3)166
N1—H1B···O2ii0.891.912.797 (4)173
O1—H1···O4iii0.821.842.650 (3)168
N1—H1C···O40.892.092.829 (4)140
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H9BrN+·HSO4
Mr284.13
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.9448 (10), 6.4084 (13), 16.674 (3)
α, β, γ (°)98.92 (3), 96.22 (3), 100.01 (3)
V3)509.04 (17)
Z2
Radiation typeMo Kα
µ (mm1)4.23
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5279, 2323, 1804
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 1.07
No. of reflections2323
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.67

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.891.902.767 (3)166.0
N1—H1B···O2ii0.891.912.797 (4)173.0
O1—H1···O4iii0.821.842.650 (3)168.3
N1—H1C···O40.892.092.829 (4)139.7
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323–3326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367–1370.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds