organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N1,N4-Bis(2-thienylmethyl­ene)cyclo­hexane-1,4-di­amine

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 1 September 2009; accepted 3 September 2009; online 9 September 2009)

The title compound, C16H18N2S2, lies about an inversion center with only half of the mol­ecule in the asymmetric unit. The cyclo­hexane ring adopts a chair conformation, and the terminal thio­phene rings are in a transoid orientation, with an S⋯S separation between the two terminal 2-thio­phene rings of 11.6733 (9) Å.

Related literature

For a general introduction to coordination polymers, see: Batten et al. (2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.]); Perry et al. (2009[Perry, J. J. IV, Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400-1417.]); Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]). For structurally related compounds, see: Yun et al. (2009[Yun, H. J., Lim, S. H. & Lee, S. W. (2009). Polyhedron, 28, 614-620.]). For related linking ligands containing terminal thio­phene rings, see: Lee & Lee (2007[Lee, H. H. & Lee, S. W. (2007). Bull. Korean Chem. Soc. 28, 421-426.]); Huh et al. (2008[Huh, H. S., Kim, S. H., Yun, S. Y. & Lee, S. W. (2008). Polyhedron, 27, 1229-1237.]); Kim & Lee (2008[Kim, S. H. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 137-144.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N2S2

  • Mr = 302.44

  • Monoclinic, P 21 /n

  • a = 6.2173 (4) Å

  • b = 7.4999 (5) Å

  • c = 17.1289 (12) Å

  • β = 97.047 (3)°

  • V = 792.67 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.46 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.864, Tmax = 0.937

  • 9045 measured reflections

  • 1889 independent reflections

  • 1590 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.02

  • 1889 reflections

  • 127 parameters

  • All H-atom parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and construction of coordination polymers (or metal–organic frameworks, MOFs) are currently under intensive study due to their desirable applications in catalysis, nonlinear optical activity, spin crossover, luminescence, long-range magnetism, adsorption–desorption, and gas storage (Batten et al., 2009; Perry IV et al., 2009; Robin & Fromm, 2006). In preparing such polymers, appropriate linking ligands play a fundamental role. We have continually reported long bis(pyridine)-, bis(furan)-, bis(thiophene)-, and (pyridine–amine)-type linking ligands and their coordination polymers (Yun et al. 2009). As an extension to our ongoing study of novel linking ligands and their coordination polymers, we have prepared a long, potential linking ligand containing an intervening cyclohexane ring with two terminal thiophene rings.

The molecular structure of the title compound (Fig. 1) contains an intervening cyclohexane ring between two iminethiophene (—NCH—2-thiophene) fragments. The cyclohexane ring fragment adopts a chair conformation. The imine fragments occupy the equatorial sites of the cyclohexane ring and are trans with respect to each other. The terminal thiophene rings also adopt an overall transoid conformation. The S···S separation between the two terminal 2-thiophene rings is 11.6733 (9) Å. Several related linking ligands containing terminal thiophene rings were previously employed to obtain coordination networks: (2-thiophene)—CHNNCH—(2-thiophene) (Lee & Lee, 2007; Huh et al., 2008) and (3-thiophene)—CHNNCH—(3-thiophene) (Kim & Lee, 2008).

Related literature top

For a general introduction, see: Batten et al. (2009); Perry et al. (2009); Robin & Fromm (2006). For structurally related compounds, see: Yun et al. (2009). For related linking ligands containing terminal thiophene rings, see: Lee & Lee (2007); Huh et al. (2008); Kim & Lee (2008).

Experimental top

At room temperature, trans-1,4-diaminocyclohexane (1.0 g, 8.76 mmol) was added to 2-thiophene carboxaldehyde (1.72 ml, 18.72 mmol) in 80 ml methanol. After adding dichloromethane (50 ml) and three drops of formic acid, the mixture was stirred for 15 h, and then the solvent was removed under vacuum. The resulting solid was extracted with dichloromethane (150 ml) and washed with water (30 ml × 3). The organic phase was dried over MgSO4 and then filtered. All the solvent was removed to give white crude solid, which was recrystallized from dichloromethane/hexane to give colorless crystals of the title compound suitable for X-ray crystallographic study (2.05 g, 6.78 mmol, 77%). mp: 511–513 K.

Refinement top

All H atoms were located from difference maps and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 50% probability displacement ellipsoids. Symmetry code for the atoms with A in their labels: -x+2, -y+2, -z+2.
N1,N4-Bis(2-thienylmethylene)cyclohexane-1,4-diamine top
Crystal data top
C16H18N2S2F(000) = 320
Mr = 302.44Dx = 1.267 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5365 reflections
a = 6.2173 (4) Åθ = 2.4–28.2°
b = 7.4999 (5) ŵ = 0.33 mm1
c = 17.1289 (12) ÅT = 296 K
β = 97.047 (3)°Block, colourless
V = 792.67 (9) Å30.46 × 0.24 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1889 independent reflections
Radiation source: sealed tube1590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.864, Tmax = 0.937k = 89
9045 measured reflectionsl = 2219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.1406P]
where P = (Fo2 + 2Fc2)/3
1889 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H18N2S2V = 792.67 (9) Å3
Mr = 302.44Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.2173 (4) ŵ = 0.33 mm1
b = 7.4999 (5) ÅT = 296 K
c = 17.1289 (12) Å0.46 × 0.24 × 0.20 mm
β = 97.047 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1889 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1590 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.937Rint = 0.022
9045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.02Δρmax = 0.19 e Å3
1889 reflectionsΔρmin = 0.18 e Å3
127 parameters
Special details top

Experimental. IR (KBr, cm-1): 3443 (w), 3103 (w), 2923 (m), 2852 (w), 1626 (s), 1430 (m), 1306 (w), 1210 (m), 1084 (m), 944 (m), 847 (m), 730 (s), 498 (m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65706 (5)0.42717 (5)0.78995 (2)0.04947 (14)
N10.78346 (18)0.71526 (15)0.91441 (7)0.0458 (3)
C10.4495 (3)0.2897 (2)0.75469 (10)0.0554 (4)
C20.2791 (3)0.3032 (2)0.79591 (10)0.0575 (4)
C30.3138 (2)0.42688 (19)0.85814 (9)0.0488 (3)
C40.51420 (19)0.50601 (18)0.86246 (7)0.0396 (3)
C50.6024 (2)0.64140 (18)0.91770 (7)0.0412 (3)
C60.8511 (2)0.85271 (18)0.97279 (8)0.0430 (3)
C70.8308 (3)1.0366 (2)0.93470 (10)0.0527 (4)
C81.0844 (2)0.8189 (2)1.00708 (10)0.0516 (3)
H10.465 (3)0.218 (2)0.7107 (11)0.069 (5)*
H20.157 (3)0.239 (3)0.7840 (10)0.070 (5)*
H30.218 (2)0.4550 (19)0.8910 (10)0.051 (4)*
H50.518 (2)0.6691 (19)0.9570 (9)0.050 (4)*
H60.761 (2)0.847 (2)1.0152 (9)0.053 (4)*
H7A0.687 (3)1.058 (2)0.9140 (12)0.074 (6)*
H7B0.909 (3)1.037 (2)0.8896 (11)0.061 (5)*
H8B1.176 (3)0.821 (2)0.9662 (10)0.056 (4)*
H8A1.104 (3)0.705 (2)1.0311 (10)0.059 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0449 (2)0.0531 (2)0.0512 (2)0.00126 (14)0.00905 (15)0.00792 (15)
N10.0473 (6)0.0465 (6)0.0443 (6)0.0070 (5)0.0087 (5)0.0088 (5)
C10.0617 (9)0.0484 (8)0.0545 (8)0.0023 (7)0.0005 (7)0.0112 (7)
C20.0523 (8)0.0552 (9)0.0631 (9)0.0150 (7)0.0003 (7)0.0052 (7)
C30.0445 (7)0.0532 (8)0.0491 (7)0.0066 (6)0.0077 (6)0.0008 (6)
C40.0400 (6)0.0389 (6)0.0393 (6)0.0006 (5)0.0035 (5)0.0025 (5)
C50.0418 (6)0.0428 (7)0.0389 (6)0.0016 (5)0.0051 (5)0.0000 (5)
C60.0450 (7)0.0441 (7)0.0407 (6)0.0041 (5)0.0084 (5)0.0076 (6)
C70.0531 (8)0.0492 (8)0.0518 (8)0.0023 (6)0.0091 (7)0.0035 (6)
C80.0544 (8)0.0397 (8)0.0584 (9)0.0050 (6)0.0030 (7)0.0044 (6)
Geometric parameters (Å, º) top
S1—C11.7038 (16)C5—H50.928 (15)
S1—C41.7181 (13)C6—C81.518 (2)
N1—C51.2619 (16)C6—C71.524 (2)
N1—C61.4616 (16)C6—H60.971 (16)
C1—C21.347 (2)C7—C8i1.522 (2)
C1—H10.941 (18)C7—H7A0.94 (2)
C2—C31.410 (2)C7—H7B0.960 (19)
C2—H20.900 (18)C8—C7i1.522 (2)
C3—C41.3736 (18)C8—H8B0.954 (16)
C3—H30.894 (15)C8—H8A0.951 (17)
C4—C51.4492 (19)
C1—S1—C491.62 (7)N1—C6—C7110.09 (11)
C5—N1—C6117.53 (11)C8—C6—C7109.96 (12)
C2—C1—S1112.26 (12)N1—C6—H6109.6 (9)
C2—C1—H1129.0 (11)C8—C6—H6108.2 (9)
S1—C1—H1118.7 (11)C7—C6—H6109.8 (9)
C1—C2—C3112.85 (14)C8i—C7—C6111.09 (12)
C1—C2—H2122.3 (11)C8i—C7—H7A111.4 (11)
C3—C2—H2124.8 (11)C6—C7—H7A110.0 (11)
C4—C3—C2112.27 (13)C8i—C7—H7B111.0 (11)
C4—C3—H3122.4 (10)C6—C7—H7B108.7 (10)
C2—C3—H3125.3 (10)H7A—C7—H7B104.5 (15)
C3—C4—C5127.31 (12)C6—C8—C7i111.86 (12)
C3—C4—S1110.99 (11)C6—C8—H8B109.9 (10)
C5—C4—S1121.69 (9)C7i—C8—H8B106.4 (10)
N1—C5—C4123.14 (12)C6—C8—H8A112.4 (10)
N1—C5—H5121.5 (10)C7i—C8—H8A110.0 (10)
C4—C5—H5115.3 (10)H8B—C8—H8A106.0 (13)
N1—C6—C8109.16 (11)
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC16H18N2S2
Mr302.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.2173 (4), 7.4999 (5), 17.1289 (12)
β (°) 97.047 (3)
V3)792.67 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.46 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.864, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
9045, 1889, 1590
Rint0.022
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.02
No. of reflections1889
No. of parameters127
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant No. 2009-007996).

References

First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuh, H. S., Kim, S. H., Yun, S. Y. & Lee, S. W. (2008). Polyhedron, 27, 1229–1237.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, S. H. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 137–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, H. H. & Lee, S. W. (2007). Bull. Korean Chem. Soc. 28, 421–426.  CAS Google Scholar
First citationPerry, J. J. IV, Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400–1417.  Web of Science PubMed CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYun, H. J., Lim, S. H. & Lee, S. W. (2009). Polyhedron, 28, 614–620.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds