organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­oxy­benzohydrazide

aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: rifat_jamal@yahoo.com

(Received 6 September 2009; accepted 9 September 2009; online 16 September 2009)

The title compound, C8H10N2O2, crystallizes with two independent mol­ecules in an asymmetric unit. The structure is stabilized by nine inter­molecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Ashiq, Jamal et al. (2008[Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci. X. 24, 103-104.], 2009a[Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009a). Acta Cryst. E65, o1551.],b[Ashiq, U., Jamal, R. A., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009b). Acta Cryst. E65, o2360.]); Jamal et al. (2008[Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.], 2009[Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o1764.]); Kallel et al. (1992[Kallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137-140.]); Saraogi et al. (2002[Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.]). For the biological activity of hydrazides, see: Ara et al. (2007[Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.]); Ashiq, Ara et al. (2008[Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O2

  • Mr = 166.18

  • Monoclinic, P 21 /n

  • a = 13.1288 (8) Å

  • b = 7.5417 (4) Å

  • c = 17.0734 (10) Å

  • β = 92.857 (3)°

  • V = 1688.40 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.39 × 0.15 × 0.11 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.990

  • 18386 measured reflections

  • 4200 independent reflections

  • 1708 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.126

  • S = 0.95

  • 4200 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11N⋯N12i 0.91 (2) 2.12 (2) 2.958 (2) 153.3 (18)
N11—H11N⋯N11i 0.91 (2) 2.63 (2) 3.191 (2) 120.9 (13)
N12—H12N⋯O11ii 0.95 (2) 2.30 (2) 3.193 (2) 155.2 (18)
N12—H13N⋯N22iii 0.85 (2) 2.47 (2) 3.185 (3) 142.6 (19)
N21—H21N⋯O11iv 0.87 (2) 1.99 (2) 2.860 (2) 172 (2)
N22—H23N⋯O21v 0.88 (2) 2.14 (2) 3.007 (2) 168 (2)
C18—H18C⋯O21vi 0.96 2.58 3.498 (3) 160
C22—H22⋯O11iv 0.93 2.35 3.208 (3) 153
C26—H26⋯O21vii 0.93 2.56 3.439 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) x, y-1, z+1; (iv) x, y+1, z-1; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazides constitute an important class of biologically active organic compounds (Ashiq, Ara et al., 2008; Ara et al., 2007). In searching for biologically active compounds we have synthesized the title compound, (I), and report its crystal structure in this paper.

The asymmetric unit of the title compound contains two crystallographically unique molecules (Fig. 1). The bond distances and bond angles in (I) are similar to the corresponding distances and angles reported in the structures of benzhydrazide (Kallel et al., 1992), para-chloro (Saraogi et al., 2002), para-bromo (Ashiq, Jamal et al., 2008),para-iodo (Jamal et al., 2008), para-methoxy (Ashiq, Jamal et al., 2009a), para-hydroxy (Jamal et al., 2009) and para-phenylsemicarbazide (Ashiq, Jamal et al., 2009b) analogues of (I).

In the crystal structure the molecules are held together by intermolecular hydrogen bonds of the types N—H···N, N—H···O and C—H···O (Table 1 and Fig. 2).

The title compound was found to be active against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging and inactive against α-glucosidase enzyme (Ashiq, Ara et al., 2008).

Related literature top

For related structures, see: Ashiq, Jamal et al. (2008, 2009a,b); Jamal et al. (2008, 2009); Kallel et al. (1992); Saraogi et al. (2002). For the biological activity of hydrazides, see: Ara et al. (2007); Ashiq, Ara et al. (2008).

Experimental top

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-3-methoxybenzoate (3.6 g, 20 mmol) in 75 ml ethanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford (I) (yield 79%). Crystal of the title compound suitable for X-ray crystallographic study were grown from a solution of methanol by slow evaporation at room temperature.

Refinement top

The hydrogen atoms bonded to N atoms were taken from fourier synthesis and their coordinates were allowed to refine. The H atoms bonded to aryl and methyl C-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å, respectively. The Uiso(H) were 1.2 times Ueq of aryl C and N atoms and 1.5 times Ueq of methyl C atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with the ellipsoids drawn at the 50% probability level, showing the atomic labels.
[Figure 2] Fig. 2. A unit cell packing diagram of (I) showing hydrogen bonds drawn by dashed lines. Hydrogen atoms not involved in H-bonding have been omitted.
3-Methoxybenzohydrazide top
Crystal data top
C8H10N2O2F(000) = 704
Mr = 166.18Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2161 reflections
a = 13.1288 (8) Åθ = 3.3–20.5°
b = 7.5417 (4) ŵ = 0.10 mm1
c = 17.0734 (10) ÅT = 296 K
β = 92.857 (3)°Needle, colourless
V = 1688.40 (17) Å30.39 × 0.15 × 0.11 mm
Z = 8
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
4200 independent reflections
Radiation source: fine-focus sealed tube1708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.979, Tmax = 0.990k = 910
18386 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0499P)2]
where P = (Fo2 + 2Fc2)/3
4200 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C8H10N2O2V = 1688.40 (17) Å3
Mr = 166.18Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.1288 (8) ŵ = 0.10 mm1
b = 7.5417 (4) ÅT = 296 K
c = 17.0734 (10) Å0.39 × 0.15 × 0.11 mm
β = 92.857 (3)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
4200 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1708 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.990Rint = 0.066
18386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.15 e Å3
4200 reflectionsΔρmin = 0.22 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.43146 (11)0.04300 (19)1.07269 (9)0.0607 (5)
O120.08143 (12)0.4522 (2)0.92286 (10)0.0767 (5)
N110.45156 (14)0.3134 (2)1.02178 (10)0.0459 (5)
H11N0.4261 (15)0.422 (3)1.0077 (12)0.055*
N120.55933 (15)0.3117 (2)1.02887 (13)0.0525 (5)
H12N0.5835 (16)0.216 (3)0.9985 (12)0.063*
H13N0.5782 (17)0.271 (3)1.0737 (13)0.063*
C110.28175 (15)0.1986 (2)1.03161 (12)0.0406 (5)
C120.23758 (16)0.3243 (3)0.98111 (12)0.0470 (6)
H120.27850.40090.95380.056*
C130.13289 (18)0.3352 (3)0.97163 (13)0.0532 (6)
C140.07247 (18)0.2229 (3)1.01231 (15)0.0646 (7)
H140.00180.23061.00590.078*
C150.11629 (19)0.0994 (3)1.06246 (15)0.0676 (7)
H150.07510.02451.09040.081*
C160.22077 (18)0.0856 (3)1.07168 (13)0.0545 (6)
H160.25000.00011.10490.065*
C170.39396 (16)0.1793 (3)1.04354 (12)0.0415 (5)
C180.1395 (2)0.5781 (4)0.88291 (17)0.0981 (11)
H18A0.17830.64900.92040.147*
H18B0.09460.65310.85160.147*
H18C0.18500.51770.84960.147*
O210.72052 (11)0.73719 (17)0.21668 (8)0.0534 (4)
O220.27188 (11)0.6456 (2)0.17438 (10)0.0692 (5)
N210.61560 (13)0.9272 (2)0.15351 (11)0.0471 (5)
H21N0.5565 (16)0.954 (3)0.1308 (12)0.057*
N220.69253 (15)1.0512 (3)0.13927 (12)0.0531 (6)
H23N0.7151 (16)1.092 (3)0.1850 (13)0.064*
H22N0.7419 (17)0.994 (3)0.1205 (14)0.064*
C210.54632 (15)0.6517 (2)0.20011 (11)0.0372 (5)
C220.44617 (16)0.7004 (3)0.18400 (12)0.0442 (5)
H220.43130.81470.16650.053*
C230.36779 (16)0.5814 (3)0.19354 (12)0.0460 (5)
C240.38825 (17)0.4133 (3)0.21999 (13)0.0553 (6)
H240.33570.33300.22680.066*
C250.48845 (19)0.3654 (3)0.23633 (14)0.0640 (7)
H250.50300.25140.25430.077*
C260.56714 (17)0.4813 (3)0.22674 (13)0.0523 (6)
H260.63410.44590.23800.063*
C270.63403 (16)0.7742 (3)0.19120 (11)0.0382 (5)
C280.18800 (17)0.5274 (3)0.17719 (16)0.0711 (8)
H28A0.20050.42470.14590.107*
H28B0.12720.58580.15710.107*
H28C0.17960.49190.23050.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0571 (10)0.0390 (9)0.0842 (12)0.0005 (8)0.0140 (8)0.0216 (8)
O120.0586 (11)0.0935 (13)0.0778 (13)0.0257 (10)0.0005 (9)0.0264 (10)
N110.0468 (12)0.0323 (10)0.0577 (12)0.0019 (9)0.0059 (9)0.0088 (9)
N120.0491 (13)0.0412 (11)0.0660 (15)0.0008 (9)0.0087 (10)0.0088 (10)
C110.0475 (13)0.0319 (11)0.0418 (13)0.0002 (10)0.0044 (10)0.0006 (10)
C120.0478 (15)0.0476 (13)0.0459 (14)0.0062 (11)0.0042 (11)0.0032 (11)
C130.0547 (16)0.0549 (15)0.0498 (15)0.0110 (13)0.0008 (12)0.0053 (12)
C140.0481 (15)0.0648 (17)0.0801 (19)0.0026 (13)0.0052 (14)0.0020 (14)
C150.0629 (18)0.0576 (17)0.082 (2)0.0121 (13)0.0019 (14)0.0150 (14)
C160.0579 (16)0.0431 (13)0.0615 (16)0.0066 (12)0.0072 (12)0.0119 (11)
C170.0529 (14)0.0315 (12)0.0396 (13)0.0005 (11)0.0035 (10)0.0026 (10)
C180.091 (2)0.115 (3)0.091 (2)0.0472 (19)0.0296 (18)0.0613 (19)
O210.0428 (9)0.0515 (10)0.0644 (11)0.0025 (7)0.0106 (8)0.0114 (7)
O220.0410 (10)0.0611 (11)0.1053 (14)0.0010 (8)0.0027 (9)0.0147 (9)
N210.0419 (11)0.0390 (11)0.0589 (13)0.0055 (9)0.0130 (9)0.0077 (9)
N220.0564 (14)0.0431 (12)0.0585 (14)0.0114 (10)0.0096 (11)0.0018 (10)
C210.0444 (13)0.0347 (12)0.0323 (12)0.0042 (10)0.0003 (9)0.0027 (9)
C220.0490 (14)0.0359 (12)0.0479 (14)0.0050 (11)0.0030 (11)0.0044 (10)
C230.0449 (14)0.0453 (13)0.0481 (14)0.0048 (11)0.0042 (11)0.0009 (10)
C240.0577 (17)0.0415 (14)0.0666 (16)0.0048 (11)0.0038 (13)0.0016 (12)
C250.0660 (18)0.0361 (13)0.089 (2)0.0054 (13)0.0042 (14)0.0130 (12)
C260.0491 (14)0.0396 (13)0.0670 (16)0.0040 (11)0.0073 (12)0.0050 (11)
C270.0451 (14)0.0350 (12)0.0339 (12)0.0035 (10)0.0039 (10)0.0040 (9)
C280.0483 (16)0.0705 (18)0.095 (2)0.0070 (13)0.0064 (14)0.0227 (15)
Geometric parameters (Å, º) top
O11—C171.234 (2)O21—C271.228 (2)
O12—C131.368 (3)O22—C231.373 (2)
O12—C181.415 (3)O22—C281.419 (2)
N11—C171.327 (2)N21—C271.337 (2)
N11—N121.414 (2)N21—N221.407 (2)
N11—H11N0.91 (2)N21—H21N0.87 (2)
N12—H12N0.95 (2)N22—H23N0.88 (2)
N12—H13N0.85 (2)N22—H22N0.85 (2)
C11—C161.374 (3)C21—C221.380 (3)
C11—C121.389 (3)C21—C261.385 (3)
C11—C171.484 (3)C21—C271.490 (3)
C12—C131.378 (3)C22—C231.381 (3)
C12—H120.9300C22—H220.9300
C13—C141.372 (3)C23—C241.368 (3)
C14—C151.372 (3)C24—C251.379 (3)
C14—H140.9300C24—H240.9300
C15—C161.377 (3)C25—C261.369 (3)
C15—H150.9300C25—H250.9300
C16—H160.9300C26—H260.9300
C18—H18A0.9600C28—H28A0.9600
C18—H18B0.9600C28—H28B0.9600
C18—H18C0.9600C28—H28C0.9600
C13—O12—C18117.70 (18)C23—O22—C28118.35 (18)
C17—N11—N12123.42 (17)C27—N21—N22122.87 (18)
C17—N11—H11N123.5 (13)C27—N21—H21N123.3 (13)
N12—N11—H11N112.5 (13)N22—N21—H21N113.5 (13)
N11—N12—H12N108.7 (13)N21—N22—H23N107.0 (15)
N11—N12—H13N109.0 (15)N21—N22—H22N107.2 (15)
H12N—N12—H13N97.3 (19)H23N—N22—H22N106 (2)
C16—C11—C12119.8 (2)C22—C21—C26118.87 (19)
C16—C11—C17118.03 (18)C22—C21—C27123.24 (18)
C12—C11—C17122.19 (19)C26—C21—C27117.88 (18)
C13—C12—C11119.8 (2)C21—C22—C23120.78 (19)
C13—C12—H12120.1C21—C22—H22119.6
C11—C12—H12120.1C23—C22—H22119.6
O12—C13—C14115.2 (2)C24—C23—O22124.6 (2)
O12—C13—C12124.7 (2)C24—C23—C22120.4 (2)
C14—C13—C12120.1 (2)O22—C23—C22115.02 (19)
C15—C14—C13120.0 (2)C23—C24—C25118.6 (2)
C15—C14—H14120.0C23—C24—H24120.7
C13—C14—H14120.0C25—C24—H24120.7
C14—C15—C16120.5 (2)C26—C25—C24121.8 (2)
C14—C15—H15119.8C26—C25—H25119.1
C16—C15—H15119.8C24—C25—H25119.1
C11—C16—C15119.9 (2)C25—C26—C21119.6 (2)
C11—C16—H16120.1C25—C26—H26120.2
C15—C16—H16120.1C21—C26—H26120.2
O11—C17—N11121.8 (2)O21—C27—N21120.57 (19)
O11—C17—C11120.67 (18)O21—C27—C21121.92 (18)
N11—C17—C11117.55 (17)N21—C27—C21117.51 (18)
O12—C18—H18A109.5O22—C28—H28A109.5
O12—C18—H18B109.5O22—C28—H28B109.5
H18A—C18—H18B109.5H28A—C28—H28B109.5
O12—C18—H18C109.5O22—C28—H28C109.5
H18A—C18—H18C109.5H28A—C28—H28C109.5
H18B—C18—H18C109.5H28B—C28—H28C109.5
C16—C11—C12—C130.1 (3)C26—C21—C22—C230.5 (3)
C17—C11—C12—C13179.32 (18)C27—C21—C22—C23179.80 (18)
C18—O12—C13—C14176.3 (2)C28—O22—C23—C244.2 (3)
C18—O12—C13—C124.0 (3)C28—O22—C23—C22175.51 (19)
C11—C12—C13—O12179.2 (2)C21—C22—C23—C240.7 (3)
C11—C12—C13—C140.4 (3)C21—C22—C23—O22179.05 (17)
O12—C13—C14—C15179.5 (2)O22—C23—C24—C25179.3 (2)
C12—C13—C14—C150.1 (4)C22—C23—C24—C250.4 (3)
C13—C14—C15—C160.8 (4)C23—C24—C25—C260.0 (3)
C12—C11—C16—C151.0 (3)C24—C25—C26—C210.1 (4)
C17—C11—C16—C15179.8 (2)C22—C21—C26—C250.1 (3)
C14—C15—C16—C111.3 (4)C27—C21—C26—C25179.42 (19)
N12—N11—C17—O110.9 (3)N22—N21—C27—O211.5 (3)
N12—N11—C17—C11179.15 (17)N22—N21—C27—C21178.00 (18)
C16—C11—C17—O1116.9 (3)C22—C21—C27—O21168.96 (19)
C12—C11—C17—O11162.3 (2)C26—C21—C27—O2110.3 (3)
C16—C11—C17—N11163.0 (2)C22—C21—C27—N2111.6 (3)
C12—C11—C17—N1117.8 (3)C26—C21—C27—N21169.15 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11N···N12i0.91 (2)2.12 (2)2.958 (2)153.3 (18)
N11—H11N···N11i0.91 (2)2.63 (2)3.191 (2)120.9 (13)
N12—H12N···O11ii0.95 (2)2.30 (2)3.193 (2)155.2 (18)
N12—H13N···N22iii0.85 (2)2.47 (2)3.185 (3)142.6 (19)
N21—H21N···O11iv0.87 (2)1.99 (2)2.860 (2)172 (2)
N22—H23N···O21v0.88 (2)2.14 (2)3.007 (2)168 (2)
C18—H18C···O21vi0.962.583.498 (3)160
C22—H22···O11iv0.932.353.208 (3)153
C26—H26···O21vii0.932.563.439 (3)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x, y1, z+1; (iv) x, y+1, z1; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10N2O2
Mr166.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.1288 (8), 7.5417 (4), 17.0734 (10)
β (°) 92.857 (3)
V3)1688.40 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.15 × 0.11
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
18386, 4200, 1708
Rint0.066
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 0.95
No. of reflections4200
No. of parameters237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11N···N12i0.91 (2)2.12 (2)2.958 (2)153.3 (18)
N11—H11N···N11i0.91 (2)2.63 (2)3.191 (2)120.9 (13)
N12—H12N···O11ii0.95 (2)2.30 (2)3.193 (2)155.2 (18)
N12—H13N···N22iii0.85 (2)2.47 (2)3.185 (3)142.6 (19)
N21—H21N···O11iv0.87 (2)1.99 (2)2.860 (2)172 (2)
N22—H23N···O21v0.88 (2)2.14 (2)3.007 (2)168 (2)
C18—H18C···O21vi0.962.583.498 (3)160
C22—H22···O11iv0.932.353.208 (3)153
C26—H26···O21vii0.932.563.439 (3)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x, y1, z+1; (iv) x, y+1, z1; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Higher Education Commission, Pakistan, for providing the diffractometer at GCU, Lahore, and Bana International for their support in collecting the crystallographic data.

References

First citationAra, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58–71.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Jamal, R. A., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009b). Acta Cryst. E65, o2360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAshiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci. X. 24, 103–104.  CSD CrossRef Google Scholar
First citationAshiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009a). Acta Cryst. E65, o1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o1764.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137–140.  CrossRef CAS Web of Science Google Scholar
First citationSaraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341–o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds